
Journal of Global Optimization 12: 1–36, 1998. 1
c 1998 Kluwer Academic Publishers. Printed in the Netherlands.

A Finite Algorithm for Global Minimization of
Separable Concave Programs

J. PARKER SHECTMAN1 and NIKOLAOS V. SAHINIDIS2;�
1Department of Mechanical & Industrial Engineering and 2Department of Chemical Engineering,
The University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801,
U.S.A.

(Received: 24 July 1995; accepted: 22 May 1997)

Abstract. Researchers first examined the problem of separable concave programming more than
thirty years ago, making it one of the earliest branches of nonlinear programming to be explored.
This paper proposes a new algorithm that finds the exact global minimum of this problem in a finite
number of iterations. In addition to proving that our algorithm terminates finitely, the paper extends a
guarantee of finiteness to all branch-and-bound algorithms for concave programming that (1) partition
exhaustively using rectangular subdivisions and (2) branch on the incumbent solution when possible.
The algorithm uses domain reduction techniques to accelerate convergence; it solves problems with
as many as 100 nonlinear variables, 400 linear variables and 50 constraints in about five minutes
on an IBM RS/6000 Power PC. An industrial application with 152 nonlinear variables, 593 linear
variables, and 417 constraints is also solved in about ten minutes.

Key words: Global optimization, concave programming, branch-and-bound, domain reduction.

1. Introduction

This paper addresses the separable concave programming problem:

(SCP):
global min f(x)
subject to x 2 D \ C

where x = (x1; . . . ; xn) 2 R
n. Given are C =

Qn
j=1 Cj , Cj = [lj ; uj], and

lj; uj 2 R [f�1;+1g; f(x) =
Pn

j=1 fj(xj), fj : R ! R, and for each j,
fj concave and bounded on Cj ; D = fx :

Pn
j=1 aijxj � bi; i = 1; :::;mg, and

aij; bi 2 R; and lastly D \C assumed to be bounded.
Concave minimization has been a central problem in global optimization since

its inception. From the viewpoint of computational complexity, SCP is NP-hard.
Even checking whether a given feasible point is a local solution is itself an NP-
hard problem [48]. Due to the NP-completeness of SCP, large classes of dissimilar
problems from a variety of disciplines can be reformulated as SCPs, e.g., integer
programming problems [25], [27], [60]; max-min problems [19]; linear and non-
linear complementarity problems [41], [77], [79]; quadratic assignment problems

� Address all correspondence to this author (e-mail: nikos@uiuc.edu).

2 J. P. SHECTMAN AND N. V. SAHINIDIS

[2], [39]; and 3-dimensional assignment problems [23]. Yet, special properties and
solution approaches can make SCPs more tractable than many NP-hard problems.

The industrial applications of concave programming range widely and run
deeply through the gamut of product and process planning (see [33, pp. 11-14],
as well as [6]). Many SCPs in operations research stem from economies of scale
and fixed-charges, with applications arising in communications network planning,
hydraulic network planning, chemical process network planning, plant location
problems, and inventory and production scheduling. Not surprisingly, the state-of-
the-art demands fast, optimal solution of SCPs.

Extensive surveys of concave programming methods are given by Horst [31],
Pardalos and Rosen [50], Benson [6] and in the books by Pardalos and Rosen [51],
Horst and Tuy [33], and Horst, Pardalos, and Thoai [32]. In brief, the three most
tried strategies are: enumerating extreme points of the feasible domain [8], [12],
[17], [18], [42], [43]; cutting-planes [2], [11], [13], [26], [29], [37], [78], [80],
[83], [85], [86], [87]; and branch-and-bound [4], [6], [8], [9], [10], [11], [21], [20],
[30], [36], [44], [47], [53], [54], [55], [56], [57], [58], [62], [63], [73], [74], [82].
Algorithms for the more general case subject to nonlinear constraints, such as [5],
[7], [34], generally combine branch-and-bound with cutting planes.

Our algorithm is a variant of branch-and-bound that is specialized for opti-
mization over polyhedra. The main contributions of the work are to prove that a
particular branching rule ensures finiteness and to demonstrate that a collection of
domain reduction techniques accelerate convergence, making routine the solution
of problems with as many as 100 nonlinear variables, 400 linear variables and 50
constraints in a matter of minutes on an IBM RS/6000 Power PC. A preliminary
version of this work was presented at the 1995 Princeton University Conference on
the State of the Art in Global Optimization [71]. In all areas addressed by the work,
the current paper includes major additional material. To wit, (1) the theory and its
proof have been strengthened, in particular, the finiteness results do not require
the global optima to be isolated; (2) the section on acceleration devices has been
expanded with the addition of new techniques based on parametric programming;
finally, (3) we display improved computational results based on a more recent
implementation.

The remainder of the report is structured as follows. Section 2 comprises a
statement of the proposed algorithm and Section 3 contains a proof of its finiteness.
Section 4 provides finite variants of the relaxed algorithm of Falk and Soland
[21], and the algorithms of Kalantari and Rosen [36], and Phillips and Rosen
[54]. Section 5 describes domain reduction techniques that accelerate the solution
process. Computer implementation is discussed in Section 6, along with numerical
results.

A FINITE ALGORITHM 3

2. Algorithm

2.1. BACKGROUND AND OUTLINE OF ALGORITHM

The algorithm combines standard branch-and-bound procedures with a new branch-
ing rule and accelerating devices to which we refer as domain reduction techniques.
To emphasize the importance of the domain reduction techniques, we sometimes
refer to the algorithm as a branch-and-reduce method (Section 5 deals with these
acceleration devices in detail). The procedure will now be formally outlined. In
the following algorithm, words in italic letters constitute the critical operations and
will be discussed separately.

ALGORITHM 1.

Initialization

Preprocess the problem constraints D \ C to form a bounded initial hyperrect-
angle C0. Add the problem min f(x) s.t. x 2 D \ C0 to the list S of open
subproblems.

Set U � +1.

Choose an integer 2 � N <1 to be used in branching.

Let k � 0. At each iteration k of the algorithm,

do (Step k)

Step k.1. Select a subproblem sk, defined as min f(x) s.t. x 2 D \Csk , from
the list S of currently open subproblems. S � S n fskg.

Step k.2. Bound the optimum of subproblem sk from above and below, i.e.,
find �sk and �sk satisfying �sk � minff(x) s.t. x 2 D \ Cskg � �sk .
By convention,�sk = �sk = +1 ifD\Csk = ;, i.e., if sk is infeasible.
If �sk < +1, a feasible point xsk 2 D \ Csk such that f(xsk) = �sk

will be found in the process.

Step k.2.a. L � mins2S[fskg �
s; If f(xsk) < U then ~x � xsk and

U � f(~x).
Step k.2.b. If U = L, then terminate with optimizer ~x.
Step k.2.c. S � S n fs : �s � Ug (fathoming rule). If �sk � U , then

goto Step k.1 (select another subproblem).

Step k.3. Branch, partitioningCsk into two new elementsCsk1 andCsk2. They
satisfy Csk1 [Csk2 = Csk andCsk1 \Csk2 = @Csk1 \@Csk2. S � S [
fsk1; sk2g, i.e., append the two subproblems minff(x) s.t. x 2 D\Csk1g

and minff(x) s.t. x 2 D \ Csk2g to the list of open subproblems.

For selection purposes, xsk1; xsk2 � xsk ; �sk1 ; �sk2 � �sk ;
�sk1 ; �sk2 � �sk (inheritance of bounds).

4 J. P. SHECTMAN AND N. V. SAHINIDIS

Let k � k + 1, and goto Step k.1.

end do

An in-depth discussion of the critical operations preprocessing,bounding, selec-
tion, and branching now follows.

2.2. PREPROCESSING

OPERATION 1. PREPROCESSING.

For any variable xj that is unrestricted from below, i.e., lj =
�1, replace lj in Cj with the solution to the linear program
minxj s.t. x 2 D \C; and for any variable xj that is unrestricted
from above, i.e., uj =1, replace uj in Cj with the solution to the
linear program maxxj s.t. x 2 D \ C .

The solution of these linear programs (LPs) yields a bounded reformulation of
SCP. In the process of solving these LPs, the algorithm records the feasible solutions
that it encounters as preliminary bounds for use in domain reduction. Optionally,
this procedure may also be applied to restricted variables, which frequently results
in a tighter problem formulation.

2.3. BOUNDING

The algorithm determines bounds on each concave subproblem sk (of Step k.2) by
solving a linear programming relaxation which is formulated in the usual fashion.
For each univariate concave term fj(xj) in the objective, first construct the linear
underestimator, call it gj(xj), that intersects fj(xj) at the current bounds lskj and
uskj of xj . It is well known that gskj (xj) is in fact the convex envelope of fj(xj) over
[lskj ; uskj]. It is also well known that the convex envelope of a separable function
f(x) =

Pn
j=1 fj(xj) over a rectangular setCsk is the sum of the convex envelopes

of its individual terms fj(xj) taken over their respective intervalsCsk
j [21]. Hence,

the convex envelope of f(x) over Csk is gsk(x) =
Pn

j=1 g
sk
j (xj).

OPERATION 2. BOUNDING (Step k.2).

Define the LP relaxation of sk as min gsk(x) s.t. x 2 D\Csk . Let
!sk be a basic optimal solution of this LP relaxation. A lower bound
on the optimum of the concave subproblem is given by �sk =
gsk(!sk), and an upper bound may be obtained by evaluating
�sk = f(!sk).

A FINITE ALGORITHM 5

2.4. SELECTION

In Step k.1 of each iteration k, the procedure selects a single subproblem to
be considered for bounding—specifically, a subproblem from the list of open
subproblems which has the the least lower bound.

OPERATION 3. SELECTION RULE (Step k.1).

Select any sk 2 S such that �sk = L.

2.5. BRANCHING

As described in Step k.3, branching replaces the partition elementCsk with two new
elements. In this manner, the algorithm constructs a binary tree of subproblems.
Hence, every element formed in the course of the procedure belongs to a unique
level of this tree. If the level of sk is a multiple of N , the algorithm selects for
partitioning a longest edge of Csk (from among those edges corresponding to
nonlinear variables), and bisects this edge. This measure is included to ensure
finiteness.

In a typical iteration, however, the partitioning rule selects an edge that cor-
responds to a variable most responsible for the gap (at the LP solution) between
the concave objective f(!sk) and its local underestimator gsk(!sk). The rule then
bisects the selected edge.

The partitioning rule has one additional twist. If the best solution currently
known lies within the Csk , it will be used as the branching point instead of the
midpoint, (provided this results in two strictly smaller elements). Branching on the
best solution currently known is key to guaranteeing the finiteness of the procedure.

Below, j0 is the index of the partitioning variable, p is the partitioning point, N
is a user supplied parameter in the initialization step of the algorithm, L(sk) gives
the level of the tree to which subproblem sk belongs,J sk denotes the set of indices
of variables nonlinear on Csk , ~x is the best solution currently known (f(~x) = U).
The partitioning rule is now stated more precisely.

OPERATION 4. PARTITIONING RULE (Step k.3).
if L(sk) mod N = 0 then
j0 2 argmaxj2J sk (u

sk
j � lskj),

(a nonlinear variable corresponding to a longest edge of Csk),
p = (uskj0 � lskj0)=2,
(bisect [lskj0 ; u

sk
j0]).

else
j0 2 argmaxj2J sk [fj(!

sk
j)� gskj (!skj)],

(a variable with largest underestimation gap at !skj).
if ~x 2 Csk and ~xj0 2]l

sk
j0 ; u

sk
j0 [then

6 J. P. SHECTMAN AND N. V. SAHINIDIS

p = ~xj0 .
(partition through ~x).

else
p = (uskj0 � lskj0)=2,
(bisect [lskj0 ; u

sk
j0]).

endif
endif

Split the domain Csk=
Qn

j=1 C
sk
j =
Qn

j=1[l
sk
j ; uskj] into two subdomains

[lskj0 ; p
sk
j0]
Q

j 6=j0[l
sk
j ; uskj] and [pskj0 ; u

sk
j0]
Q

j 6=j0 [l
sk
j ; uskj].

Note that the proposed partitioning rule successively refines the initial rect-
angular set C0 of variable bounds through the course of the branch-and-bound
procedure. Moreover, each partition element is itself a rectangular set. In branch-
and-bound algorithms, rectangular partitioning is the most natural choice when
minimizing a separable function, because of the ease in bounding. Tuy [81] treats
non-rectangular partitions for branch-and-bound.

3. Convergence and Finiteness

For the general branch-and-bound procedure, it can be easily shown that if the
bounding operation is consistent and the selection operation is bound improving
then the procedure is convergent (see [33, IV.2] for definitions and relevant the-
orems). We now show that the proposed algorithm possesses a much stronger
property than convergence, namely finiteness.

The proof is by contradiction. Consider the tree of subproblems generated by
the branch-and-bound procedure, and assume that the algorithm is infinite. By this
assumption, the algorithm must generate at least one infinite sequence fCsqg of
subdomainsCsq that are nested, i.e., satisfyingCsq+1 � Csq , where q indicates the
level of the tree to which subproblem sq belongs. The following lemmas deal with
such a sequence. They show that any path descending from the root of the tree will
terminate at finite length.

LEMMA 1. limq!1(u
sq
j � l

sq
j) = 0; for all j 2 J sq (exhaustiveness).

Proof. This property follows from the fact that every finitely many levels
along the path the algorithm bisects a longest edge. It suffices to prove that
limq!1 maxj2J sq (u

sq
j � l

sq
j) = 0, meaning that for given " > 0, there exists

M > 0 sufficiently large such that for q � M , maxj2J sq (u
sq
j � l

sq
j) < ". Let

� denote maxj2J 0(u0
j � l0j)—from among j 2 J 0, a longest edge of the ini-

tial box C0. Every N levels along the path, the algorithm halves the length of a
longest edge from among j 2 J sq . Hence, when q �

��J 0
��N , maxj2J sq (u

sq
j �

l
sq
j) � 1

2�; when q � 2
��J 0
��N , maxj2J sq (u

sq
j � l

sq
j) � 1

4�; etc. In gener-

al, maxj2J sq (u
sq
j � l

sq
j) � 1

2

b
q

jJ 0jN
c
�. If we seek 1

2

b
q

jJ 0jN
c
� < ", we must have

A FINITE ALGORITHM 7

b q

jJ 0jN
c > log2

�
"

, in other words,
q�(qmodjJ 0jN)

jJ 0jN
> log2

�
"

. It follows that we need

q >
��J 0
��N log2

�
"
+q mod

��J 0
��N , which is at most

��J 0
��N log2

�
"
+
��J 0
��N �1.

Let M =
��J 0
��N (log2

�
"
+ 1), and Lemma 1 holds. E

LEMMA 2. limq!1[f(!sq)� �sq] = 0 (consistency).
Proof. Case (i): For some Q <1, f(x) is continuous on Csq for all q � Q.
Recall from Section 2.3 that �sq = gsq (!sq), where gsq is the objective, and

!sq the solution of the relaxation of sq. Consider the components fj of f from
which the respective components gsqj of gsq arise.

If for some Q <1, fj becomes linear on C
sQ
j , then 8q > Q, fj remains linear

on Csq
j . By the nature of its underestimator gsqj , fj(xj)� g

sq
j (xj) = 0;8xj 2 C

sq
j ,

in particular for !sqj .
If, on the other hand, fj is continuous yet nonlinear on C

sq
j for all q, the argu-

ment resembles one in [81]. Since j 2 J sq , by Lemma 1, limq!1(u
sq
j � l

sq
j) =

0. Hence, as fj is continuous on C
sq
j , limq!1

���fj(usqj)� fj(l
sq
j)
��� = 0. Also,

limq!1

���fj(!sqj)� fj(u
sq
j)
��� = 0, since

���!sqj � u
sq
j

��� � ���usqj � l
sq
j

���.
Note that !sqj may be expressed as �lsqj + (1 � �)u

sq
j , for some 0 � � � 1.

As gsqj is linear, gsqj (!
sq
j) may be expressed as �gsqj (l

sq
j) + (1��)gsqj (u

sq
j), which

is the same as �fj(l
sq
j) + (1 � �)fj(u

sq
j), owing to the way g

sq
j is constructed.

Hence we find that
���fj(usqj)� g

sq
j (!

sq
j)
���= �

���fj(usqj)� fj(l
sq
j)
���, which is at most���fj(usqj)� fj(l

sq
j)
���. From the triangle inequality,

fj(!
sq
j)� g

sq
j (!

sq
j) �

���fj(!sqj)� fj(u
sq
j)
���+ ���fj(usqj)� g

sq
j (!

sq
j)
���

�
���fj(!sqj)� fj(u

sq
j)
���+ ���fj(usqj)� fj(l

sq
j)
��� :

Therefore, limq!1[fj(!
sq
j)�g

sq
j (!

sq
j)] � 0. The reverse inequality holds because,

by design, gsqj underestimates fj over Csq
j . Thus consistency is proved for the

continuous case.

Case (ii): f(x) is discontinuous on Csq for all q.

It is well known that a function concave on a closed set may have discontinuities
only along the boundary of the set. Accordingly, fj , which was assumed concave
on C0

j = [l0j ; u
0
j], may be discontinuous only at l0j , at u0

j , or at both. In the event
that fj is discontinuous at both l0j and u0

j , Lemma 1 will eventually ensure that
[l
sq
j ; u

sq
j] � [l0j ; u

0
j] in the proper sense, since a discontinuity implies that j 2 J .

8 J. P. SHECTMAN AND N. V. SAHINIDIS

Without loss of generality then, assume that if fj has a discontinuity in C
sq
j , it

occurs at only one endpoint of the interval, say lsqj . Let D be the set of indices of
discontinuous variables. Then, for j 2 D, lsqj = l0j , and xj 2]l

sq
j ; u

sq
j [necessarily

implies that fj(xj)� g
sq
j (xj) > 0.

As fj is continuous relative to]l
sq
j ; u

sq
j], f

+
j (lj) = limxj!l+

j
fj(xj) exists.

Moreover, since 8j 2 D, fj is concave yet discontinuous at lsqj , Lj := f+j (l
sq
j)�

fj(l
sq
j) > 0. In the present case, j 2 D implies that j 2 J sq ;8q, so that, by Lemma

1, 8� > 0;9Qj
1 sufficiently large such that for q > Q

j
1, usqj � l0j < �. Also, the

extension defined by(
fj(xj); when xj 2]l

sq
j ; u

sq
j]

f+j (l
sq
j); when xj = l

sq
j

is continuous relative to [l
sq
j ; u

sq
j], in particular at lsqj . Hence, 8" > 0;9� such that

u
sq
j � l0j < � implies jfj(u

sq
j) � f+j (l

sq
j)j < ". Since Lj > 0, we have that 8K

satisfying 0 < K < Lj ;9Q
j
1 such that q > Q

j
1 implies jfj(u

sq
j) � f+j (l

sq
j)j <

Lj �K .

Simultaneously, q > Q
j
1 also implies that fj(u

sq
j) � fj(l

sq
j) > 0, because

Lj �K < Lj = f+j (l
sq
j)�fj(l

sq
j) and so q > Qj

1 ensures that jfj(u
sq
j)�f

+
j (l

sq
j)j <

f+j (l
sq
j)� fj(l

sq
j). By the triangle inequality,

Lj � jfj(u
sq
j)� f+j (l

sq
j)j+ [fj(u

sq
j)� fj(l

sq
j)];

or

fj(u
sq
j)� fj(l

sq
j) � Lj � jfj(u

sq
j)� f+j (l

sq
j)j

> Lj � (Lj �K)

= K > 0:

Also, by Lemma 1, 8K;M > 0;9Qj
2 sufficiently large such that for q > Qj

2,
u
sq
j � l0j < K=M . Therefore, 8M > 0; q > maxj2DfQ

j
1; Q

j
2g implies

fj(u
sq
j)� fj(l

sq
j)

u
sq
j � l

sq
j

> M;8j 2 D:

Now, for all the continuous variables xj ; j 2 C := f1; :::; ng n D, fj is con-
tinuous, bounded, and concave on the entirety of [lsqj ; u

sq
j]. Via Theorem 24.1 of

Rockafellar [61] and the Mean Value Theorem, we obtain

�1 < fj
0
�
(u

sq
j) �

fj(u
sq
j)� fj(l

sq
j)

u
sq
j � l

sq
j

� fj
0
+
(l
sq
j) < +1;

where fj 0�, fj 0+ are the left, right derivatives of fj , respectively.

A FINITE ALGORITHM 9

Finally, then, if we examine a feasible direction d of the LP relaxation of sq, we
find that d is an ascent direction if

cd =
X
j

fj(u
sq
j)� fj(l

sq
j)

(u
sq
j � l

sq
j)

dj > 0:

Let B := fx : xj = l0j ;8j 2 Dg. Suppose that d is a direction going from a vertex
x1 of D \ Csq through a second vertex x2 of D \ Csq , where x1 2 D \ Csq \B
and x2 2 D \ Csq n B. Thus we have dj � 0;8j 2 D with dj > 0, for some
j 2 D. On the other hand, 8j 2 C; dj may be positive or negative. We have already
shown that for big enough q, cj stays positive and can be made arbitrarily large for
any j 2 D, while j 2 C, cj may be negative, but remains bounded. Therefore, 9Q
such that q > Q implies that

X
j2D

fj(u
sq
j)� fj(l

sq
j)

(u
sq
j � l

sq
j)

dj > �
X
j2C

fj(u
sq
j)� fj(l

sq
j)

(u
sq
j � l

sq
j)

dj ;

or cd > 0.
As Csq

j & l
sq
j = l0j ;8j 2 D, Csq always contains a point of B. Furthermore,

such a point will always be in D \ Csq . Were this not the case, then after some
finite q, we would haveD\Csq = ;, and the algorithm would discard sq, contrary
to the assumption that sq was part of an infinite sequence. Thus for all q > Q, only
vertices x of D \ Csq satisfying xj = l

sq
j = l0j ;8j 2 D solve the LP relaxation of

subproblem sq.
Therefore, for q > Q, fj(!sq) � g

sq
j (!sq) = 0;8j 2 D, because the uni-

variate relaxations gsqj are exact at the endpoints of Csq
j , in particular lsqj . That

limq!1 fj(!
sq)� g

sq
j (!sq) = 0;8j 2 C follows by the argument of Case (i). E

LEMMA 3. For q = 1; 2; . . ., the corresponding subdomain D \ Csq contains a
global minimum of SCP (convergence).

Proof. By contradiction. If a global minimum x? is not in D \ Csq , then
f(!sq) is strictly greater than f(x?). Since there is a finite difference between
f(x?) and f(!sq), we may choose an index q sufficiently large so that, due to
Lemma 2, �sq is made arbitrarily close to f(!sq), therefore strictly greater than
f(x?), and therefore strictly greater than any current lower bound L. Due to the
least-lower-bound selection rule, the algorithm will not select sq in the first place,
which contradicts the assumption that sq was part of an infinite sequence of nested
subdomains. E

REMARK 1. By the above lemma, a subproblem s in the sequence has that Cs

contains a global optimum, x?, of SCP. For any direction dA from x? that is feasible
to D \ Cs, consider the ray x? + �dA; � > 0. The compactness and convexity of
D \ C guarantees that a unique point xA on this ray satisfies (1� �)x? + �xA 2
D \C; 0 � � � 1 and (1� �)x? + �xA 62 D \ C; � > 1.

10 J. P. SHECTMAN AND N. V. SAHINIDIS

LEMMA 4. After finitely many iterations, any subproblem s in the sequence has
the property that for each global optimizer x? 2 Cs and each direction dA from x?

that is feasible to D\Cs, the correspondingxA as described in Remark 1 satisfies
the following trichotomy 8j 2 J s:
Either xAj > usj , or xAj < lsj , or xAj = x?j .

Proof. Suppose that for subproblem t in the sequence, ltj � xAj � utj , yet
xAj 6= x?j , for a certain j 2 J t. After a finite number of additional iterations, the
algorithm will generate a descendant s of t for which either j 62 J s or by Lemma
1, j satisfies usj � lsj <

���xAj � x?j

���, as J s � J t. Hence, for all j 2 J s for which

xAj 6= x?j , either xAj > usj or xAj < lsj , and s satisfies the desired property. E

LEMMA 5. Given a concave function f : R ! R nonlinear on [x; y], for some
points x; y 2 R with y > x, and given � 2 R with 0 < � < 1, then

[f(�x+(1� �)y)� f(x)](y�x) > [f(y)� f(x)][(�x+ (1� �)y)� x](1)

and

[f(y)� f(x)][y� (�x+(1��)y)] > [f(y)� f(�x+(1��)y)](y�x):(2)
Proof. For a nonlinear concave function, f(�x + (1 � �)y) > �f(x) + (1 �

�)f(y). Hence, we may multiply y > x by f(�x+(1��)y)��f(x)�(1��)f(y)
to obtain the valid inequality

[f(�x+ (1� �)y)� �f(x)� (1� �)f(y)]y >

[f(�x+ (1� �)y)� �f(x)� (1� �)f(y)]x: (3)

By adding (1� �)[f(y)� f(x)]y + [f(x)� f(�x+ (1� �)y)]x to both sides of
(3) we obtain (1). By adding [f(y) � f(�x + (1 � �)y)]y + �[f(x) � f(y)]x to
both sides of (3) we obtain (2). E

LEMMA 6. Given a subproblem s as described in Lemma 4, x? 2 Cs solves the
LP relaxation of s if and only if x? is a global optimizer of SCP. Moreover, any pair
of global optimizers x?; x?? 2 Cs, have that x?j = x??j ;8j 2 J s.

Proof. Let x? 2 Cs globally optimize SCP. The directions dA from x? fea-
sible to D \ Cs fall into two classes based on the uniquely corresponding point
xA described in Remark 1. In order to think of x? and xA as the ‘x’ and ‘y’ of
the Lemma 5, consider the smallest rectangular set containing both Cs and xA,
that is,

Qn
j=1[minflsj ; x

A
j g;maxfusj ; x

A
j g]. Define J sA to be the set of indices of

variables nonlinear on this set. The first class of directions are those for which
for which 9j 2 J sA such that xAj 6= x?j . The remaining directions, for which
xAj = x?j ;8j 2 J

sA, fall into the second class.

A FINITE ALGORITHM 11

Consider any direction dA of the first class. As x? 2 Cs and 9j 2 J sA such
that xAj 6= x?j , the trichotomy of Lemma 4 ensures that xA 62 Cs. Also, any point
x?? = (1� �)x? + �xA; 0 < � < 1 cannot be a global optimizer, as

f [(1� �)x? + �xA] > (1� �)f(x?) + �f(xA)

� minff(x?); f(xA)g = f(x?):

In particular, x?? 2 Cs implies that x?? is not a global optimizer. We show that the
direction dA, given as dA := xA � x?, is a direction of ascent from x? for the LP.

As dA is feasible to D \ Cs, usj > lsj for all j satisfying xAj 6= x?j , x?j < usj for
all j satisfying xAj > usj and x?j > lsj for all j satisfying xAj < lsj .

For an index j 2 J sA satisfying xAj > usj , apply Lemma 5 to the relationships
xAj > usj > lsj and xAj > x?j > lsj to obtain, respectively

[fj(u
s
j)� fj(l

s
j)](x

A
j � lsj) > [fj(x

A
j)� fj(l

s
j)](u

s
j � lsj) (4)

and

[fj(x
A
j)� fj(l

s
j)](x

A
j � x?j) > [fj(x

A
j)� fj(x

?
j)](x

A
j � lsj): (5)

Then multiply (4) by xAj � x?j and multiply (5) by usj � lsj to obtain, respectively

[fj(u
s
j)� fj(l

s
j)](x

A
j � lsj)(x

A
j � x?j)

> [fj(x
A
j)� fj(l

s
j)](u

s
j � lsj)(x

A
j � x?j) (6)

and

[fj(x
A
j)� fj(l

s
j)](x

A
j � x?j)(u

s
j � lsj)

> [fj(x
A
j)� fj(x

?
j)](x

A
j � lsj)(u

s
j � lsj): (7)

From (6) and (7), we obtain

[fj(u
s
j)� fj(l

s
j)](x

A
j � lsj)(x

A
j � x?j)

> [fj(x
A
j)� fj(x

?
j)](x

A
j � lsj)(u

s
j � lsj) (8)

and since xAj > lsj , we find that

[fj(u
s
j)� fj(l

s
j)](x

A
j � x?j) > [fj(x

A
j)� fj(x

?
j)](u

s
j � lsj): (9)

Note that if x?j = lsj , then (4) is directly equivalent to (9) and (5) is not required.
Similarly, for an index j 2 J sA satisfying xAj < lsj , apply Lemma 5 to the

relationships xAj < lsj < usj and xAj < x?j < usj to obtain, respectively

[fj(u
s
j)� fj(x

A
j)](u

s
j � lsj) > [fj(u

s
j)� fj(l

s
j)](u

s
j � xAj) (10)

12 J. P. SHECTMAN AND N. V. SAHINIDIS

and

[fj(x
?
j)� fj(x

A
j)](u

s
j � xAj) > [fj(u

s
j)� fj(x

A
j)](x

?
j � xAj): (11)

Then multiply (10) by x?j �x
A
j and multiply (11) by usj� l

s
j to obtain, respectively,

[fj(u
s
j)� fj(x

A
j)](u

s
j � lsj)(x

?
j � xAj)

> [fj(u
s
j)� fj(l

s
j)](u

s
j � xAj)(x

?
j � xAj) (12)

and

[fj(x
?
j)� fj(x

A
j)](u

s
j � xAj)(u

s
j � lsj)

> [fj(u
s
j)� fj(x

A
j)](x

?
j � xAj)(u

s
j � lsj): (13)

From (12) and (13), we obtain

[fj(x
?
j)� fj(x

A
j)](u

s
j � xAj)(u

s
j � lsj)

> [fj(u
s
j)� fj(l

s
j)](u

s
j � xAj)(x

?
j � xAj) (14)

and since usj > xAj , we find that

[fj(x
?
j)� fj(x

A
j)](u

s
j � lsj) > [fj(u

s
j)� fj(l

s
j)](x

?
j � xAj) (15)

which is equivalent to (9). Note that if x?j = usj , then (10) is directly equivalent to
(15) and (11) is not required.

Of course, for the linear variables j 62 J sA,

[fj(u
s
j)� fj(l

s
j)](x

A
j � x?j) = [fj(x

A
j)� fj(x

?
j)](u

s
j � lsj) (16)

From the optimality of x? to SCP,X
j

[fj(x
A
j)� fj(x

?
j)] � 0:

Let F := fj : xAj 6= x?jg. Then we may writeX
j2F

[fj(x
A
j)� fj(x

?
j)] � 0; so that

X
j2F

[fj(x
A
j)� fj(x

?
j)]
Y
h2F

(ush � lsh) � 0; or

X
j2F

[fj(x
A
j)� fj(x

?
j)](u

s
j � lsj)

Y
h2Fnfjg

(ush � lsh) � 0: (17)

Overestimating some terms of (17) with (9) and using (16), we then obtainX
j2F

[fj(u
s
j)� fj(l

s
j)](x

A
j � x?j)

Y
h2Fnfjg

(ush � lsh) > 0

A FINITE ALGORITHM 13

or

X
j2F

fj(u
s
j)� fj(l

s
j)

(usj � lsj)
(xAj � x?j) =

X
j

cjd
A
j > 0:

Hence, dA is a direction of ascent from x?.

Next consider any direction of the second class (xAj = x?j ;8j 2 J
sA), and

observe that f [(1 � �)x? + �xA] = (1 � �)f(x?) + �f(xA). Hence, a point
x?? = (1 � �)x? + �xA; 0 < � < 1, is a global optimizer if and only if xA is a
global optimizer.

For linear variables xj , fj(xj) must be of the form �jxj , with the coefficients
�j 2 R. As J s � J sA, for j 62 J s, fj(xj) takes this form, and as gsk is also
linear, so gskj (xj) � fj(xj) = �jxj ;8j 62 J

s. This shows that for the LP objective
c,

cj =

�
0; j 2 J s

�j ; j 62 J
s ;

and

cdA =
X
j 62J

�j(x
A
j � x?j) =

X
j 62J

(�jx
A
j � �jx

?
j)

=
X
j 62J

[fj(x
A
j)� fj(x

?
j)] = f(xA)� f(x?):

Hence, if xA is not a global optimizer, then f(xA)� f(x?) > 0 and dA increases
the LP objective, but if xA is a global optimizer, then f(xA)� f(x?) = 0, so that
dA does not change the LP objective.

Therefore, any feasible direction dA from x? either (1) increases the LP objec-
tive, or (2) does not change the LP objective. Consider a point x?? = x? + �dA,
� > 0. In the former case, if x?? 2 Cs then x?? is not a global optimizer. In the
latter case, any feasible x??

is a global optimizer. E

THEOREM 1. The algorithm terminates finitely with a global minimum of SCP.
Proof. Given a subproblem as described by Lemma 4, it follows from Lemma 6

that the algorithm identifies a global minimum, x?, which becomes the best solution
currently known (~x x?). As the trichotomy of Lemma 4 is satisfied in finitely
many iterations, a global minimum is thus identified finitely. In accordance with
the branching rule, swill be partitioned at ~x unless the level of s is a multiple ofN .
In the latter case, at least one of the children of s inherits the above properties, and
we consider it to be s, instead. Thus, the procedure splits s into two subproblems
by introducing a partition through ~x = x? and branching on an edge corresponding

14 J. P. SHECTMAN AND N. V. SAHINIDIS

to some nonlinear variable. In the event that s contains several global minimizers,
Lemma 6 shows that the coordinates of such points differ only in the linear variables,
hence the constructed partition actually passes through all global minimizers in s
and the relaxation gap at all such points is simultaneously reduced.

Hence, each of the resulting partition elements also satisfies Lemmas 4 and 6.
Unless the level of a subproblem is a multiple ofN , the procedure branches through
the incumbent, ~x, whenever possible. From s, the branching process thus continues
at most d N

N�1 jJ je times until some global minimizer, x?, say, is rendered gapless.
If a descendant of s contains a global minimum, then a global minimum solves its
LP relaxation. In other words, a descendant of s at most d N

N�1 jJ je levels below
s will have a lower bound exactly equal to its upper bound and will be fathomed
without any further partitioning.

The same argument applies to a path of the branch-and-bound tree containing
any other global minimum.

Finally, consider any inferior paths of the branch-and-bound tree. There is a
finite difference between the optimum of an inferior path and the global optimum
f(x?). Consequently, for a subproblem sufficiently far down the inferior path,
the lower bound will be made arbitrarily close to the optimum, therefore strictly
greater than f(x?) = U = L. As the global minimum will have been found
already, the fathoming rule (of Step k.2c) will then eliminate all inferior paths of
the branch-and-bound tree from further consideration by the algorithm. E

4. Discussion of Related Algorithms

The proof of Theorem 1 makes it clear that a branch-and-bound algorithm based
on rectangular partitions and linear underestimation terminates finitely for SCP if
the following two conditions are met.

CONDITION 1. For all nested sequences fCsqg of subdomains Csq generated by
the algorithm limq!1 maxj2J (u

sq
j � l

sq
j) = 0.

CONDITION 2. If a subproblem contains a global solution point, the algorithm
ensures that in a finite number of iterations the gap between the lower bound on the
subproblem and its optimum will be reduced to zero. For the type of underestimators
mentioned herein, this condition can be satisfied by constructing a partition of the
subproblem through the said point.

Condition (1) guarantees that eventually a bounds box containing a global
solution will satisfy Lemma 4 and therefore the corresponding LP subproblem will
provide the global minimizer as its solution (Lemma 6). Condition (2) then ensures
that branching will reduce the underestimation gap at the global solution point,
eventually rendering the underestimator gapless. At that stage, the subproblem will
be fathomed and U , L will be set to f(x?). All inferior subproblems are eventually

A FINITE ALGORITHM 15

fathomed, as happens in any convergent branch-and-bound algorithm. Conditions
(1) and (2) in hand, we can design finite branch-and-bound algorithms for SCP.

For example, Falk and Soland give a ‘relaxed’ algorithm (FSR) which they
prove to be convergent. Falk and Soland also claim the algorithm to be finite for
SCP, although its finiteness is brought into question by Horst and Tuy ([33, p.
362]). While the finiteness of FSR remains an open question, a slightly modified
version of the FSR algorithm can be proven finite by the same theorem offered
above to prove finiteness of our algorithm. The existing branching rule of FSR is
an !-partitioning:

OPERATION 5. !-PARTITIONING.

Variable Selection
j0 2 argmaxj2J [fj(!

sk
j)� gskj (!skj)]

(a nonlinear variable with largest underestimation gap).
Point Selection
p = !sk

(solution of relaxed problem).
Split Csk into two subdomains:
[lskj0 ; p

sk
j0]
Q

j 6=j0[l
sk
j ; uskj] and [pskj0 ; u

sk
j0]
Q

j 6=j0 [l
sk
j ; uskj].

The rule meets Condition (2), (provided that x? = !sq for some q < 1), yet,
it fails to meet Condition (1). The following modification, however, meets both
conditions:

OPERATION 6. MODIFIED !-PARTITIONING.

Given a positive integer N .
if L(sk) mod N=0 then
j0 2 argmaxj2J (u

sk
j � lskj)

(the variable corresponding to a longest edge of Csk).
p = (uskj0 � lskj0)=2

else
Select j0 and p as in the unmodified rule.

endif
Split Csk at p, j0.

By modifying the !-branching rule to bisect a longest edge of the selected subdo-
main everyN th level of the tree, Condition (1) is met. The finiteness of the modified
algorithm follows, since FSR performs bounding and subproblem selection in the
same manner as the algorithm proposed in Section 2.

Kalantari and Rosen specialize their algorithm [36] for quadratic concave pro-
grams that can be stated as min

Pn
j=1 cjxj �

1
2�jx

2
j s.t. x 2 D \C . The algorithm

is proven convergent. Therefore, it terminates finitely to an "-approximate solution.

16 J. P. SHECTMAN AND N. V. SAHINIDIS

(An "-approximate solution is a solution, call it x", that satisfies jf(x")� f(x?)j �
", where x? is a global optimizer and " is a prespecified tolerance). The algorithm
uses the following fathoming rule (Here, " > 0 is required for finite termination;
S is the list of currently open subproblems;U is the current least upper bound; and
�s indicates the lower bound of subproblem s):

OPERATION 7. "-TOLERANT FATHOMING RULE.

S S n fs s.t. �s > U � "g.

This algorithm also employs the following specialized branching rule:

OPERATION 8. KALANTARI–ROSEN PARTITIONING.

Variable Selection
j0 2 argmaxj2J �j(u

sk
j � lskj)2.

Point Selection
Let p = (uskj0 � lskj0)=2.
Split Csk at p,j0.

This rule meets Condition (1) but not Condition (2). To render this algorithm finite
without recourse to an "-tolerance, one can modify the branching and fathoming
rules as follows (Recall that ~x indicates the best known solution in the current stage
k of the procedure):

OPERATION 9. MODIFIED K–R PARTITIONING.

Variable Selection
j0 2 argmaxj2J �j(u

sk
j � lskj)2

(First choose j0 according to the existing rule).
Point Selection
If ~x 2 Csk and ~xj0 2 (lskj0 ; u

sk
j0) then

Choose p = ~xj0

else
Let p = (uskj0 � lskj0)=2
(choose p according to the existing rule).

endif
Split Csk at p, j0.

OPERATION 10. MODIFIED FATHOMING RULE.

S S n fs s.t. �s � Ug.

The change in branching rule enables the algorithm to begin fathoming a sub-
domain which contains a global optimizer as soon as that point is known from

A FINITE ALGORITHM 17

bounding. Moreover, the change in fathoming rule precludes the said subproblem
from being prematurely fathomed. In tandem, the modified fathoming and parti-
tioning rules enable this algorithm to converge finitely to a global minimum. The
parallel algorithm of Phillips and Rosen [54] can be similarly modified to ensure
finite convergence to a global minimum.

A discussion of procedures for SCP could hardly be complete without reference
to the algorithm of Soland [74]. Soland’s algorithm attains finiteness not by its
branching strategy, which is the same !-subdivision employed in FSR, but by
means of a different bounding strategy. In formulating the LP relaxation of a given
subproblem sk, the procedure first constructs the linear underestimator gsk(x) in a
fashion identical to FSR and the proposed algorithm (see Bounding, Section 2.3).
Soland’s algorithm then determines the lower bound�sk by minimizing gsk(x) over
the original set of bounds D \ C , rather than D \ Csk . Naturally, this produces
lower bounds that are weaker than the ones in the bounding procedure used here.

The proposed algorithm relies on the same subproblem for lower bounding
and locating the optimum. In more general terms, the algorithm employs a simple
relaxation that gradually approximates the objective, rather than requiring the
gradient of the objective in explicit form. In contrast, finiteness results of Al-
Khayyal and Kyparisis ([1]) require the objective function to be differentiable, and
rely on the solution of additional auxiliary problems that involve the gradient of
the objective. Moreover, the proof of finiteness for the proposed algorithm rests
exclusively on the geometric properties of the problem domain without use of its
analytic representation. As a consequence, the result is more readily applicable
than that in [1], which requires the analytic specification of the polyhedron to be
nondegenerate at the solution point.

5. Acceleration Devices

5.1. USE OF ACCELERATION DEVICES

This section describes techniques which are not required for finiteness, nor even
convergence of the algorithm. However, we have found that their incorporation in
the algorithm is necessary to ensure termination in reasonable computing times.
The techniques aim at reducing the domains of the problem variables. As a result
of shrinking these regions, the LP bounds developed over the smaller regions are
tighter and the size of the branch-and-bound tree smaller. Techniques similar to
some of the ones given below have long been used in integer programming, e.g.,
[75]. For concave programming and other continuous global optimization, similar
techniques have been used by Thakur [76], Hansen, et al. [28], Sahinidis [67],
Lamar [38], Ryoo and Sahinidis [66], [65], and Sherali and Tuncbilek [73]. For a
comparative survey of this literature see [66], [65].

The acceleration devices given in Section 5.2 employ linear parametric pro-
gramming methods, that is, extensive dual information obtained through exchange
of basis in the relaxed problem. Section 5.3 deals with acceleration devices based

18 J. P. SHECTMAN AND N. V. SAHINIDIS

on sensitivity analysis only, that is, dual multipliers that are obtained directly from
the solution of the relaxed problem, without basis exchange. Finally, Section 5.4
provides techniques that do not require dual information at all.

Consider the LP relaxation min gs(x) s.t. x 2 D \ Cs of concave subproblem
s. Let !s be a point that solves this relaxation, let �s := gs(!s), and let U be a
known upper bound on the global solution.

5.2. ACCELERATION DEVICES EMPLOYING LINEAR PARAMETRIC PROGRAMMING

TECHNIQUE 1. Generating valid inequalities by using linear parametric pro-
gramming to change the left-hand sides of existing constraints:

Widely used methods, discussed in, e.g., [24], track the optimum of an LP
when a particular constraint

Pn
j=1 aijxj � bi is perturbed from its current valuePn

j=1 aij!
s
j by a quantity �i. For an LP minimization problem, this parametric

function ��(�i) is well known to be convex. As �i is decreased from zero, let l�i
denote the value of (

Pn
j=1 aij!

s
j) + �i for which ��(�i) = U or the perturbed LP

becomes infeasible, whichever of the two is greater. Similarly, as �i is increased
from zero, let u�i denote the value of (

Pn
j=1 aij!

s
j) + �i for which ��(�i) = U or

the perturbed LP becomes infeasible, whichever of the two is lesser. Since ��(�i)
is convex, it must be greater than U for any feasible values of (

Pn
j=1 aij!

s
j) + �i

less than l�i or greater than u�i , if such values exist. Hence, the inequalities
nX

j=1

aijxj � l�i

and
nX

j=1

aijxj � u�i

are valid for s.

TECHNIQUE 2. Tightening bounds by using linear parametric programming to
change the values of variables:

Consider a variable xj , to be perturbed from its current value !sj by �j . As �j is
decreased from zero, let l�j denote the value of!sj+�j for which ��(�j) = U or the
perturbed LP becomes infeasible, whichever of the two is greater. Similarly, as �j
is increased from zero, let u�j denote the value of !sj +�j for which ��(�j) = U or
the perturbed LP becomes infeasible, whichever of the two is lesser. Since ��(�i)
is convex, it must be greater than U for any feasible values of !sj + �i less than l�j
or greater than u�j , if such exist. Hence, the constraints

xj � l�j
and

xj � u�j
are valid for s.

A FINITE ALGORITHM 19

5.3. ACCELERATION DEVICES BASED ON SENSITIVITY ANALYSIS ONLY

The domain reduction techniques in this subsection are special cases of those
developed by Ryoo and Sahinidis in [66], [65].

5.3.1. Domain Reduction by Use of Available Marginal Values

TECHNIQUE 3. Generating mirror inequalities by using sensitivity analysis with
respect to bi:

Consider a linear constraint
Pn

j=1 aijxj � bi that is active at !s with a dual
multiplier value of �si < 0, and consider further, perturbing its current right-hand
bi by a quantity �i. For all values of�i for which the perturbed LP remains feasible,
the affine function �si�i+�s is less than or equal to the parametric function ��(�i),
since the latter is convex. As �i is decreased from zero, let l�i denote the value of
�i for which �si�i+�s = U . It follows that ��(�i) must be greater than U for any
feasible values of bi + �i less than l�i , if such exist. Hence, the mirror inequality

nX
j=1

aijxj � l�i = bi +
U � �s

�si

is valid for s.

TECHNIQUE 4. Tightening bounds by using sensitivity analysis with respect to lsj
or usj:

Consider a domain-bound xj � usj that is active at !s with a dual multiplier
value of �sj < 0, and consider further, perturbing the bounding value usj by �j . For
all values of �j for which the perturbed LP remains feasible, the affine function
�sj�j + �s is less than or equal to the parametric function ��(�j), since the latter
is convex. As �j is decreased from zero, let l�j denote the value of �j for which
�sj�j + �s = U . It follows that ��(�j) must be greater than U for any feasible
values of usj + �i less than l�j , if such exist. Hence, the constraint

xj � l�j = usj +
U � �s

�sj

is valid forCs. Similarly, consider a domain-boundxj � lsj that is active at!s with
a dual multiplier value of �j > 0, and consider further, perturbing the bounding
value lsj by �j . For all values of �j for which the perturbed LP remains feasible, the
affine function �sj�j + �s is less than or equal to the parametric function ��(�j),
since the latter is convex. As �j is increased from zero, let u�j denote the value of
�j for which �sj�j + �s = U . It follows that ��(�j) must be greater than U for
any feasible values of lsj + �i greater than u�j , if such exist. Hence, the constraint

xj � u�j = lsj +
U � �s

�sj

is valid for s.

20 J. P. SHECTMAN AND N. V. SAHINIDIS

βπ(λ j)

λ j
sλ j + βs

U

βs

x j ,λ j

lj
s lj

σ lj
π ωj

s = uj
s

λ j = 0

Figure 1. Comparison of Techniques 2 and 4 for improving a lower bound.

5.3.2. Domain Reduction Using Probing to Induce Marginal Values

TECHNIQUE 5. Generating mirror inequalities by probing the slack domain of
constraint i:

Consider a linear constraint
Pn

j=1 aijxj � bi that is inactive at !s. Solve
the partially restricted relaxed problem r, defined as min gs(x) s.t. x 2 D \
Cs \ f

Pn
j=1 aijxj � big, to obtain a solution point !r of value �r = gs(!r). If

the constraint has a dual multiplier value of �ri > 0 in the solution of r, apply
Technique 3 to the added constraint of problem r, to find that the mirror inequality

nX
j=1

aijxj � l�i = bi �
U � gs(!r)

�ri

is valid for s.

TECHNIQUE 6. Tightening bounds by probing the existing domain of variable xj:
Consider a domain-bound xj � usj that is inactive at !s. Solve the partially

restricted relaxed problem r, defined as min gs(x) s.t. x 2 D\Cs\fxj � usjg, to
obtain a solution point !r of value �r = gs(!r). If the bound has a dual multiplier
value of �rj > 0 in the solution of r, apply Technique 4 to the added constraint of
problem r, to find that

xj � u�j = usj �
U � gs(!r)

�rj

is valid for s. Similarly, consider a domain-bound xj � lsj that is inactive at
!s. Solve the partially restricted relaxed problem r, defined as min gs(x) s.t. x 2
D \ Cs \ fxj � lsjg, to obtain a solution point !r of value �r = gs(!r). If the
bound has a dual multiplier value of �sj < 0 in the solution of r, apply Technique
4 to the added constraint of problem r, to find that

xj � l�j = lsj �
U � gs(!r)

�rj

A FINITE ALGORITHM 21

βπ(λ j)

U

βs

x j ,λ j

λ j = 0
ωj

s uj
π uj

σ ωj
r = uj

s

βr
λ j

r λ j + βr

Figure 2. Comparison of Techniques 2 and 6 for improving an upper bound.

is valid for s.

5.4. ACCELERATION DEVICES THAT DO NOT REQUIRE DUAL INFORMATION

5.4.1. Optimality-Based Tightening

Optimality-based tightening uses the current upper and lower bounds on the global
solution (U and L, respectively,) to generate constraints that may trim-off inferior
portions of Cs.

TECHNIQUE 7. OBT
Use the least upper bound.

Compute �U
h =U �

P
j 6=h min fj(usj); fj(l

s
j).

CASE (A). There exists a point x(A)h such that �U
h = fh(x

A
h) and fh is

decreasing at x(A)h .

CASE (B). There exists a point x(B)

h such that �U
h = fh(x

B
h) and fh is

increasing at x(B)

h .
If CASE (A)^:CASE (B) then
xh � x

(A)

h

is valid for s.
If CASE (B)^:CASE (A) then
xh � x

(B)

h

is a valid for s.
If CASE (B)^CASE (A) then
xh � x

(B)

h _ xh � x
(A)

h

is valid for s.
Use the least lower bound.

Compute �L
h = L�

P
j 6=h max[lsj ;usj] fj(xj).

22 J. P. SHECTMAN AND N. V. SAHINIDIS

CASE (C). There exists a point x(C)

h such that �L
h = fh(x

C
h) and fh is

decreasing at x(C)

h .

CASE (D). There exists a point x(D)

h such that �L
h = fh(x

D
h) and fh is

increasing at x(D)

h .
If CASE (C) then
xh � x

(C)

h

is valid for s.
If CASE (D) then
xh � x

(D)

h

is a valid for s.

Note that the inverse f�1 of a concave function f : R! R is itself not necessarily
a function. For example, consider the case where the relation f�1

h is one-to-two
and let f�1U

h and f�1L
h denote the upper and lower forks of f�1

h , respectively.
In this case [lsh; u

s
h] can be pared-down to [lsh; u

s
h] \ f[f

�1L
h (�L

h); f
�1L
h (�U

h)] [

[f�1U
h (�U

h); f
�1U
h (�L

h)]g, which may be disjoint.

5.4.2. Feasibility-Based Tightening

Feasibility-based tightening generates constraints that cut-off infeasible portions
of the solution space.

TECHNIQUE 8. FBT
Consider the constraints

Pn
j=1 aijxj � bi, i = 1; :::;m. Then one of the con-

straints8>>>>>><
>>>>>>:

xh �
1
aih

0
@bi �X

j 6=h

minfaiju
s
j ; aijl

s
jg

1
A ; aih > 0

xh �
1
aih

0
@bi �X

j 6=h

maxfaiju
s
j ; aijl

s
jg

1
A ; aih < 0

(18)

is also valid for each pair (i; j) that satisfies aij 6= 0.

Of course, to tighten variable bounds at subproblem s, one could simply solve
the 2n LPs

fmin�xj s.t. x 2 D \ Csg; (19)

which would provide tightening that is optimal, albeit computationally expensive.
In this regard, the former cuts (18) function as ‘poor man’s linear programs,’
particularly when they are applied iteratively, looping over the set of variables
several times.

A FINITE ALGORITHM 23

x1

2x

f.

d.

b.

e.

c.

a.

Figure 3. Poor Man’s LPs.

Figure 3 shows how an implementation of (18) compares to the solution of
the LPs for different two-dimensional examples. In each instance, the outer box
represents the bound set before tightening begins, with constraints shown in bold
lines and the feasible region shaded. Bounds improved by (18) are shown in solid
line; improvements by (19) are shown in dashed line, when they differ from those
of (18).

In Figures 3a and 3b, techniques (18) and (19) give the same result. In Figure
3c, the effects of (18) agree with the effect of (19) for variable x2, while also
improving the bounds on x1, albeit not to the maximum possible extent. In Figure
3d, (18) improves bounds on both variables, although neither bound is improved
to the maximum possible extent. Figure 3e shows the bounds on x2 tightened to
their full extent by (18), but here the heuristic fails to improve bounds on x1, at
all. Figure 3f is particularly insightful as a pathological case for the heuristic. In
the latter case, the bounds are not improved at all, whereas a great deal of bounds
reduction is possible, illustrated by the four LP solutions (dashed lines).

24 J. P. SHECTMAN AND N. V. SAHINIDIS

One can see why Figure 3f is pathological for the ‘poor man’s linear programs.’
The heuristic can make use of only one bound and one constraint at a time, while
linear programming considers the entire constraint set simultaneously. In practice,
a case such as Figure 3f would not occur if all of the 2n LPs are solved initially, in
preprocessing, on a one-time basis (see Section 2.2, also Sketch, below). Thereafter,
for each subdomain Cs, at least one bound acts as a non-redundant constraint of
D \ Cs, i.e., @(D \ Cs) n @D 6= ;. Finally, note that sometimes the heuristic
achieves its maximum domain reduction asymptotically, e.g., Figure 3b and Figure
3d, where improved bounds on variable x1 then enable bound improvement on
variable x2 that, in turn, facilitate further tightening of x1 on the next pass, etc.

The following sketch illustrates how the Algorithm employs the various tight-
ening techniques given above (see Section 2 for portions omitted here).

ALGORITHM 2. (SKETCH) (Branch-and-Reduce Algorithm).

Initialization Preprocess the problem as detailed in Section 2.2: Solve LPs to
bound unbounded variables and (optionally) to tighten existing bounds.
Using feasible points found in Preprocessing, determine an initial value of U
and apply Techniques 7 and 8 to the original domain D \ C .

...

Let k � 0. At each iteration k of the algorithm,

do (Step k). Step k.1. Select a subproblem sk.

...

Step k.2. Apply all of the Techniques 1-8 to subproblem sk. Bound the
optimum of subproblem sk from above and below, i.e., find �sk and a
revised �sk satisfying �sk � fmin f(x) s.t. x 2 D \ Cskg � �sk

Step k.2.a. L � mins2S[fskg �
s; If f(xsk) < U then ~x � xsk and

U � f(~x).
If U was improved in Step k.2.a then

Apply Techniques 1-8 to the entire set S of open subproblems.
else

Apply Techniques 1-8 only to subproblem sk.
endif
If the domain reduction techniques succeeded goto the beginning of

Step k.2.
...

end do

A FINITE ALGORITHM 25

6. Computational Results

6.1. IMPLEMENTATION

The proposed algorithm was implemented using BARON [68], a general
purpose global optimization software package for solving nonlinear and mixed
integer-nonlinear programs (see [16, 40, 66, 65], and consult
http://archimedes.me.uiuc.edu for the software and further details).
The strategy used in the package closely follows the presentation of the previ-
ous section. It employs the branch-and-reduce optimization strategy, integrating
conventional branch-and-bound with a wide array of domain reduction tools and a
combination of branching rules. The implementation was done on an IBM RS/6000
Power PC in FORTRAN. IBM’s OSL (Release 2 [35]) was used to solve the relaxed
LPs.

Table 1 provides results for 36 small to medium-sized problems from the liter-
ature. For each problem, the table provides the size in terms of constraint rows and
variables, the source, and results obtained with the algorithm. These experiments
used an absolute optimality tolerance of " = 10�6 throughout, meaning that at any
given iteration, the algorithm deleted all subproblems with lower bounds greater
than or equal to U � ". Here, Ntot, Nopt and Nmem denote the total number of
iterations, the node at which the optimal solution was found, and the maximum
number of nodes stored in memory during the search, respectively. It can be seen
that the algorithm solves many of the problems at the root node. Also in the table,
Ttot, Tpre, and Tbar denote the total time taken to solve the problem, the time spent
on preprocessing, and the time for branch-and-reduce (Ttot = Tpre+Tbar). Tbar is
broken down further into time spent solving the LP relaxations (Trel), time spent
applying the problem-specific domain reduction Techniques 7 and 8 (Tred), and
time spent applying Techniques 3 and 4 which use marginals (Tmar). No probing
(Techniques 5 and 6) was employed. Evidently, domain reduction using marginals
takes a negligible amount of time. In total, domain reduction took but a small
fraction of the total CPU time.

The results of Table 1 were obtained using the partitioning rule proposed in
Section 2.5, and without any domain reduction based on probing. Table 2 compares
results for different strategies. The omega partitioning rule is considered first. For
the larger problems solved, it appears to construct search trees that are larger
than those formed by other strategies. Omega partitioning could not solve the
last problem (from [45], see also [46]) even after 10000 iterations. On the other
hand, the proposed bisection of the most violated variable provides more balanced
trees and smaller memory requirements. The table also illustrates the effect of
bisection with three different probing strategies considered: no probing, probing
the bounds of a single variable, and probing the bounds of three variables. Clearly,
increasingly sophisticated search strategies lead to smaller search trees and memory
requirements although the CPU times actually may increase, as probing entails the
solution of additional LPs.

26 J. P. SHECTMAN AND N. V. SAHINIDIS

Table 1. Computational results for miscellaneous test problems.

Number of Nodes CPU sec IBM RS/6000 Power PC
Problem m n Source Ntot Nopt Nmem Ttot Tpre Tbar Trel Tred Tmar

Pan1 4 3 [49] 3 3 2 0.1 0 0.1 0 0 0
Pan2 1 5 [49] 7 2 3 0.1 0 0.1 0 0 0
Z 5 3 [86] 7 0 4 0.1 0 0.1 0 0 0
BSJ2 5 3 [3] 7 0 4 0.1 0 0.1 0 0 0
BSJ4 4 6 [3] 1 1 1 0.1 0 0 0 0 0
KR 5 2 [36] 3 1 2 0.1 0 0.1 0 0 0
PhR1 5 6 [52] 1 0 1 0.1 0 0 0 0 0
PhR2 5 6 [52] 0 0 0 0 0 0 0 0 0
PhR3 5 6 [52] 1 1 1 0.1 0 0 0 0 0
PhR4 4 3 [52] 3 0 2 0.1 0 0.1 0 0 0
PhR11 4 3 [52] 1 1 1 0.1 0 0.1 0 0 0
PhR12 4 3 [52] 1 1 1 0.1 0 0.1 0 0 0
PhR13 10 3 [52] 1 1 1 0.1 0 0.1 0 0 0
PhR14 10 3 [52] 1 0 1 0.1 0 0.1 0 0 0
PhR15 4 4 [52] 3 0 2 0.1 0 0.1 0 0 0
PhR20 9 3 [52] 1 1 1 0.1 0 0.1 0 0 0
FP1 1 5 [22] 7 7 3 0.2 0 0.1 0 0 0
FP2 2 6 [22] 1 0 1 0.1 0 0 0 0 0
FP3 10 13 [22] 1 0 1 0.1 0 0 0 0 0
FP4 5 6 [22] 1 1 1 0.1 0 0 0 0 0
FP5 11 10 [22] 5 1 3 0.2 0.1 0.1 0 0 0
FP6 5 10 [22] 9 8 4 0.2 0.1 0.1 0 0 0
FP7a 10 20 [22] 73 30 9 1.2 0.2 0.9 0.6 0.3 0
FP7b 10 20 [22] 83 32 9 1.2 0.2 0.9 0.6 0.2 0
FP7c 10 20 [22] 67 32 9 1.3 0.2 1 0.7 0.3 0
FP7d 10 20 [22] 59 28 9 0.9 0.2 0.7 0.5 0.2 0
FP7e 10 20 [22] 181 66 21 2.6 0.2 2.3 1.8 0.5 0
FP8 10 24 [22] 3 3 2 0.2 0.1 0.1 0.1 0 0
RV1 5 10 [64] 33 2 4 0.3 0 0.2 0.2 0 0
RV2 10 20 [64] 99 13 12 1.1 0.2 0.9 0.7 0.2 0
RV3 20 20 [64] 203 23 24 2.2 0.2 2 1.7 0.2 0
RV7 20 30 [64] 161 5 11 2.9 0.4 2.4 1.4 1 0
RV8 20 40 [64] 165 49 18 3.2 0.8 2.4 1.8 0.5 0
RV9 20 50 [64] 439 90 65 8 1 7 4.8 2.1 0
M1 11 20 [45] 187 4 5 2.5 0.2 2.2 1.8 0.3 0
M2 21 30 [45] 281 1 5 7.1 1 6.2 4.8 1.3 0

Table 3 provides comparative computational results for test problems that appear
in Floudas and Pardalos [22]. The table presents CPU times in seconds with num-
ber of nodes in parentheses. Variants of two different branch-and-bound algorithms
are considered, the Reformulation-Linearization Technique (RLT) of Sherali and

A FINITE ALGORITHM 27

Table 2. Computational results with different search strategies.

Omega Bisection Probing-1 Probing-3
Problem Ntot Nmem Ttot Ntot Nmem Ttot Ntot Nmem Ttot Ntot Nmem Ttot

Pan1 3 2 0.1 3 2 0.1 3 2 0.1 3 2 0.2
Pan2 7 3 0.1 7 3 0.1 7 3 0.1 7 3 0.1
Z 7 4 0.1 7 4 0.1 3 2 0.2 3 2 0.2
BSJ2 7 4 0.1 7 4 0.1 3 2 0.2 3 2 0.1
BSJ4 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
KR 3 2 0.1 3 2 0.1 1 1 0.1 1 1 0.1

PhR1 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR2 1 1 0 0 0 0 0 0 0 0 0 0
PhR3 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR4 3 2 0.1 3 2 0.1 1 1 0.1 1 1 0.1
PhR11 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR12 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR13 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR14 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR15 3 2 0.1 3 2 0.1 3 2 0.1 3 2 0.1
PhR20 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1

FP1 7 3 0.1 7 3 0.2 7 3 0.2 7 3 0.2
FP2 1 1 0.1 1 1 0.1 1 1 0 1 1 0.1
FP3 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
FP4 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
FP5 3 2 0.2 5 3 0.2 3 2 0.2 3 2 0.2
FP6 9 6 0.2 9 4 0.2 9 4 0.3 9 4 0.4
FP7a 81 17 1.3 73 9 1.2 23 4 2 31 3 2.6
FP7b 87 20 1.4 83 9 1.2 15 3 1.7 11 3 1.8
FP7c 83 21 1.5 67 9 1.3 17 3 1.8 11 3 1.7
FP7d 71 13 1.3 59 9 0.9 21 3 2 13 3 1.9
FP7e 169 36 2.9 181 21 2.6 79 12 6.6 79 12 9.6
FP8 3 2 0.3 3 2 0.2 3 2 0.4 1 1 0.5

RV1 17 3 0.2 33 4 0.3 5 3 0.3 5 3 0.3
RV2 75 23 0.8 99 12 1.1 13 5 1.1 9 3 1.1
RV3 271 66 3.1 203 24 2.2 25 6 1.7 17 5 1.7
RV7 177 63 2.8 161 11 2.9 13 3 1.8 11 3 1.9
RV8 201 28 4.3 165 18 3.2 19 5 3.2 13 4 3.3
RV9 561 113 9.5 439 65 8 55 11 7.2 39 10 7.5

M1 2713 757 39.5 187 5 2.5 117 3 8.1 41 3 7.3
M2 >10000 9959 >213 281 5 7.1 115 3 22.4 113 3 27

28 J. P. SHECTMAN AND N. V. SAHINIDIS

Table 3. Computational results for the Floudas and Pardalos test problems.

Reformulation-Linearization [73] Branch-and-Reduce
Problem m n Tolerance IBM 3090 supercomputer IBM RS/6000 Power PC

(%) LD-RLT-NLP LD-RLT-NLP(SC) R&S [66] proposed

FP5 11 10 1 1.12 (1) 1.17 (1) 0.2 (1)
FP6 5 10 1 1.61 (5) 1.72 (5) 0.2 (8)
FP7a 10 20 5 8.13 (7) 3.29 (3) 6.88 (35) 0.5 (15)
FP7b 10 20 5 2.54 (1) 2.61 (1) 2.05 (13) 0.4 (11)
FP7c 10 20 5 13.26 (11) 2.55 (1) 5.71 (35) 0.4 (13)
FP7d 10 20 5 5.04 (5) 2.61 (1) 2.10 (13) 0.6 (23)
FP7e 10 20 5 27.00 (25) 15.94 (11) 11.37 (69) 0.9 (59)

Table 4. CPU seconds for Rosen and van Vliet problems (" = 0:001).

Problem m n G&R86 R&vV87 P&R87 S&S95
Cyber 845 CRAY2 CRAY2 RS/6000

RV1 5 10 10.34 1.50 0.11 0.3
RV2 10 20 20.47 18.69 1.43 1.1
RV3 20 20 211.87 73.84 3.21 2.2
RV7 20 30 417.26 118.76 9.16 2.9
RV8 20 40 328.55 195.53 16.52 3.2
RV9 20 50 8.0

Tuncbilek [73], (see also [72]), and the branch-and-reduce algorithm. RLT is known
to produce stronger lower bounds than the more straightforward linear program-
ming underestimation used by branch-and-reduce. As a result, RLT requires the
solution of fewer nodes. On the other hand, the algorithm proposed in this paper
solves much simpler relaxations and therefore requires smaller CPU times than
RLT. In addition, our approach can accommodate larger problems, as the RLT
would introduce prohibitively larger numbers of constraints and variables in the
subproblem relaxations. The algorithm of Ryoo and Sahinidis [66] is slower than
the one presently proposed, since it incorporates only a subset of the domain reduc-
tion techniques used here, it does not perform extensive preprocessing, and it uses
omega subdivision as the branching rule.

Computational results for the Rosen and van Vliet [64] problems are presented
in Table 4. We note that the parallel algorithm P&R87 of Phillips and Rosen [54]
serves as the current benchmark for quadratic programming. One can draw an
important conclusion by comparing the entries of this table. Today on a standard
engineering workstation, we can solve in a few seconds the same problems which,
until recently, required several minutes of CPU time on large mainframes.

A FINITE ALGORITHM 29

The algorithm was also applied to randomly generated large-scale problems of
the form:

min
1
2
�1

nX
j=1

�j(xj � �!j)
2 + �2

kX
j=1

djyj

subject to
�
A1x+A2y � b
x � 0; y � 0

;

where

x; �; �! 2 Rn;

y; d 2 Rk;

b 2 Rm;

A1 2 R
m�n;

A2 2 R
m�k;

�1; �2 2 R:

The values of the parameters �1 and �2 are 0.001 and 0.1, respectively. Such
problems have been studied by Phillips and Rosen [54] and Visweswaran and
Floudas [84]. The data for the constants �, �!, d, b, A1, and A2 were generated by
the same routines used by [54] and [84].

Table 5 presents computational results for problems of different sizes of m,
n and k. The data for the GOP algorithm are taken from [84] and the data for
the P&R algorithm are taken from [54]; (in the more recent [58], a variant of the
latter algorithm is applied to smaller test problems than those studied by Table 5).
These strategies used relative optimality criteria of 0.1 and 0.001, respectively. Our
algorithm was applied with an absolute optimality criterion of " = 10�6. It should
be noted that the codes used to generate the test problems of Table 5 were the same
for the three algorithms. Also, each row of this table was generated from a total of
10 different random runs. Apparently, our sequential implementation on a standard
engineering workstation provides more accurate results for this class of problems
in very reasonable computing times. Even the largest problems with 100 nonlinear
variables, 400 linear variables and 50 constraints can be solved within a matter of
minutes.

For each pair of values taken by m and n in Table 5, Figure 4 depicts how
the number of nodes requires by the branch & bound algorithm increases with
the number k of linear variables. The increase seems to follow an approximately
quadratic relationship.

Regarding the comparative results of Tables 3 through 5, it is also insightful
to compare the relative capabilities of the hardware, which allows us to directly
compare CPU times on different computers at different points in time. Table 6,
extracted from Dongarra [15], gives three measures of computing speed for each

30 J. P. SHECTMAN AND N. V. SAHINIDIS

Table 5. CPU times (sec) for the Phillips and Rosen test problems.

GOP93 [84] P&R87 [54]* P&R87 [54]* proposed algorithm
E=0.1 (relative) E=0.001 (relative) E=0.001 (relative) " = 10�6 (absolute)

HP 730 CRAY 2 (parallel) CRAY 2 (serial) IBM RS/6000 PC
m n k avg std dev min avg max min avg max min avg max

20 25 0 0.456 0.012 1 2 4 1 6 9 0.2 0.4 0.5
20 25 50 1.662 1.614 1 1 1 1 2 3 0.8 1 1.2
20 25 100 16.508 19.711 1 2 3 3 4 5 1 2 3
20 25 200 33.149 28.441 1 7 18 5 20 47 2 4 7
20 25 400 82.026 57.834 7 14 32 20 44 93 4 9 14
20 50 0 0.554 0.012 3 6 13 9 17 37 1.2 1.4 1.6
20 50 50 17.436 30.908 1 2 3 4 5 7 2 3 4
20 50 100 46.761 49.195 2 5 14 7 17 43 3 4 7
20 50 200 108.968 80.490 4 9 29 11 29 79 5 9 21
20 50 400 20 32 51 68 105 163 8 20 31
40 25 0 0.465 0.017 0.2 0.4 0.5
40 25 50 0.970 0.566 0.3 1 1.2
40 25 100 2.708 4.211 1 2 3
40 25 200 25.142 26.127 2 3.5 4
40 25 400 11 17 24
50 100 0 5.5 8 23
50 100 50 8 9.5 11
50 100 100 7 14 29
50 100 200 13 45 137
50 100 400 38 168 380

* Data Estimated From Figures 5-8 of [54].

Table 6. Comparative Speed of Computers* in Mflop/s**

Computer Experimental Theoretical
LINPACK, n=100 Custom, n=1000

Cray-2/4-256 (4 processors, 4.1 ns) 62 1226 1951
IBM 3090 supercomputer 9.6-16 71-97 116-138
HP 9000/730 (66 MHz) 24 49 66
IBM RS/6000-N40 (PowerPC601 50MHz) 6.7 NA 50

*Extracted from [15].
*Millions of floating point operations per second.

machine previously mentioned. For each machine listed in the first column of the
table, the second column provides the speed at which a dense system of 100 linear
equations is solved using standard programs from the LINPACK [14] libraries in a
FORTRAN environment. The third column shows results based on solving a dense
system of 1000 linear equations using a custom implementation on each computer.
Finally, the fourth column indicates the theoretical peak rate of execution based

A FINITE ALGORITHM 31

0

100

200

300

400

500

0 50 100 200 400

Linear Variables k

N
um

be
r

of
 N

od
es

m=20, n=25
m=20, n=50
m=40, n=25
m=50, n=100

m constraints, n nonlinear variables

Figure 4. Number of branch & bound nodes for the Phillips and Rosen test problems.

on the cycle time of the hardware, as given by the manufacturer. By examining
Table 6, one can easily see that the other studies use faster processors. Yet, from
the computational results in Tables 3-5, one finds that our algorithm is substantially
faster than existing ones.

6.2. APPLICATION TO NETWORK PROBLEMS WITH CONCAVE COSTS

The problem of selecting processes and planning expansions of an industrial chem-
ical complex to maximize net present value has traditionally been formulated as a
multiperiod, mixed-integer linear program [70], [69]. However, the fixed-charges
in such problems allow for reformulation as concave programs. In fact, a concave
programming approach to these problems seems computationally more expedient
than solving the equivalent MILP; for solving actual process planning problems,
solution of the SCP using the algorithm proposed in this paper requires about
one-third of the time required to solve the MILP using OSL [40].

For example, consider the petrochemical complex planning problem given in
[70]. The problem involves thirty-eight processes and twenty-eight chemicals over
four time periods, making for an MILP formulation in 897 variables (152 binaries
and 745 continuous variables), and 569 constraints. An equivalent SCP formu-
lation has only 745 continuous variables (152 concave and 593 linear), and 417
constraints. While solving the MILP on OSL required 13,289 nodes and 770 CPU
seconds, solving the SCP on BARON with the algorithm developed in this paper
required just 5,237 nodes and 638 CPU seconds [40].

32 J. P. SHECTMAN AND N. V. SAHINIDIS

7. Conclusions

We draw two. One conclusion is of practical concern, the other of theoretical value.
Practically speaking, domain reduction techniques are an exceedingly compelling
way to accelerate computer implementations of branch-and-bound for nonlinear
programming. For concave programming in particular, this increase in computing
speed facilitates the solution of large industrial problems that had previously been
solved only by integer programming.

From the theoretical standpoint, a branch-and-bound algorithm using rectangu-
lar partitions can solve SCP globally and finitely by

(a) branching at the best known solution whenever possible, and
(b) partitioning exhaustively in the search process.

The degree to which results of the current paper can be extended to the general
NLP to provide finite termination with a global solution remains a major open
question.

Acknowledgements

Partial financial support from the EXXON Education Foundation and from the
National Science Foundation under grants DMII 94-14615 and CAREER award
DMII 95-02722 to N.V.S. is gratefully acknowledged. We wish to thank Dr. A.
Phillips for providing us his test problem generator. The paper has benefited greatly
from anonymous review.

References

1. F. Al-Khayyal and J. Kyparisis. Finite convergence of algorithms for nonlinear programs and
variational inequalities. Journal of Optimization Theory and Applications, 70(2):319–332, 1991.

2. M. S. Bazaraa and H. D. Sherali. On the use of exact and heuristic cutting plane methods for the
quadratic assignment problem. Journal Operational Society, 33:991–1003, 1982.

3. S. Ben Saad and S. E. Jacobsen. A level set algorithm for a class of reverse convex programs.
Annals of Operations Research, 25:19–42, 1990.

4. H. P. Benson. A finite algorithm for concave minimization over a polyhedron. Naval Research
Logistics Quarterly, 32:165–177, 1985.

5. H. P. Benson. Separable concave minimization via partial outer approximation and branch and
bound. Operations Research Letters, 9:389–394, 1990.

6. H. P. Benson. Concave minimization: Theory, applications and algorithms. In, P. M. Pardalos and
R. Horst (eds.) Handbook of Global Optimization, Chapter 3, Hingham, Massachusetts, 1994.

7. H. P. Benson and R. Horst. A branch and bound-outer approximation algorithm for concave
minimization over a convex set. Computers Math Applications, 21(6/7):67–76, 1991.

8. H. P. Benson and S. Sayin. A finite concave minimization algorithm using branch and bound and
neighbor generation. Journal of Global Optimization, 5:1–14, 1994.

9. I. M. Bomze and G. Danninger. A global optimization algorithm for concave quadratic program-
ming problems. SIAM Journal of Optimization, 3:826–842, 1993.

10. I. M. Bomze and G. Danninger. A finite algorithm for solving general quadratic problems. Journal
of Global Optimization, 4:1–16, 1994.

11. K. M. Bretthauer and A. V. Cabot. A composite branch and bound, cutting plane algorithm for
concave minimization over a polyhedron. Computers in Operations Research, 21(7):777–785,
1994.

A FINITE ALGORITHM 33

12. A. V. Cabot and R. L. Francis. Solving certain nonconvex quadratic minimization problems by
ranking the extreme points. Operations Research, 18:82–86, 1970.

13. R. Carvajal-Moreno. Minimization of concave functions subject to linear constraints. Technical
Report ORC 72–3, Operations Research Center, University of California, Berkeley, 1972.

14. J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User’s Guide. SIAM, Philadelphia,
PA, 1979.

15. Jack J. Dongarra. Performance of various computers using standard linear equations software.
Technical Report CS–89–85, Computer Science Department, University of Tennessee, Knoxville,
and Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, 1997.

16. M. C. Dorneich and N. V. Sahinidis. Global optimization algorithms for chip layout and com-
paction. Engineering Optimization, 25(2):131–154, 1995.

17. M. E. Dyer. The complexity of vertex enumeration methods. Mathematics of Operations
Research, 8:381–402, 1983.

18. M. E. Dyer and L. G. Proll. An algorithm for determining all extreme points of a convex polytope.
Mathematical Programming, 12:81–96, 1977.

19. J. E. Falk. A linear max–min problem. Mathematical Programming, 5:169–188, 1973.
20. J. E. Falk and K. R. Hoffman. A successive underestimation method for concave minimization

problems. Mathematics of Operations Research, 1(3):251–259, 1976.
21. J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming problems.

Management Science, 15(9):550–569, 1969.
22. C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained Global Opti-

mization Algorithms. Number 268 in Lecture Notes in Computer Science. Springer–Verlag,
Berlin– Heidelberg, 1990.

23. A. M. Frieze. A bilinear programming formulation of the 3–dimensional assignment problem.
Mathematical Programming, 7:376–379, 1974.

24. T. Gal. Postoptimal Analyses, Parametric Programming, and Related Topics. McGraw-Hill
Internaional, London, 1979.

25. F. Gianessi and F. Niccolucci. Connections between nonlinear and integer programming prob-
lems. In, Symposia Mathematica XIX, Istituto Nazionale Di Alta Mathematica, pp. 161–176,
New York, 1976.

26. F. Glover. Convexity cuts and cut search. Operations Research, 21:123–134, 1973.
27. F. Glover and D. Klingman. Concave programming applied to a special class of 0-1 integer

programs. Operations Research, 21:135–140, 1973.
28. P. Hansen, B. Jaumard, and S.-H. Lu. An analytical approach to global optimization. Mathemat-

ical Programming, Series B, 52:227–254, 1991.
29. K. L. Hoffman. A method for globally minimizing concave functions over convex sets. Mathe-

matical Programming, 22:22–32, 1981.
30. R. Horst. An algorithm for nonconvex programming problems. Mathematical Programming,

10:312–321, 1976.
31. R. Horst. On the global minimization of concave functions–introduction and survey. OR Spek-

trum, 6:195–205, 1984.
32. R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization. Nonconvex

Optimization and its Applications. Kluwer Academic Publishers, Norwell, MA, 1995.
33. R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer–Verlag, Berlin,

third edition, 1996.
34. N. V. Horst, R., Thoai and H. P. Benson. Concave minimization via conical partitions and

polyhedral outer approximation. Mathematical Programming, 50:259–274, 1991.
35. IBM. Optimization Subroutine Library Guide and Reference Release 2. International Business

Machines Corporation, Kingston, NY, third edition, July 1991.
36. B. Kalantari and J. B. Rosen. An algorithm for global minimization of linearly constrained

convex quadratic functions. Mathematics of Operations Research, 12(3):544–561, 1987.
37. S. L. Krynski. Minimization of a concave function under linear constraints (modification of

tuy’s method). In, Survey of Mathematical Programming, Proceedings of the Ninth International
Mathematical Programming Symposium, Mathematicl Programming Society, Budapest, 1976,
volume 1, pp. 479–493, Amsterdam, 1979.

34 J. P. SHECTMAN AND N. V. SAHINIDIS

38. B. W. Lamar. An improved branch and bound algorithm for minimum concave cost network flow
problems. Journal of Global Optimization, 3(3):261–287, 1993.

39. E. L. Lawler. The quadratic assignment problem. Management Science, 9:586–699, 1963.
40. M. L. Liu and N. V. Sahinidis and J. P. Shectman. Planning of chemical process networks via

global concave minimization. In, I. E. Grossmann (ed.), Global Optimization in Engineering
Design, Boston, MA, 1996.

41. O. L. Mangasarian. Characterization of linear complementarity problems as linear programs.
Mathematical Programming Study, 7:74–87, 1978.

42. T. H. Matheiss. An algorithm for determining unrelevant constraints and all vertices in systems
of linear inequalities. Operations Research, 21:247–260, 1973.

43. T. H. Matheiss and D. S. Rubin. A survey and comparison of methods for finding all vertices of
convex polyhedral sets. Mathematics of Operations Research, 5:167–185, 1980.

44. G. P. McCormick. Attempts to calculate global solutions of problems that may have local minima.
In, F. A. Lootsma (ed.), Numerical Methods for Non–Linear Optimization, pp. 209–221, New
York, 1972.

45. K. Moshirvaziri. Personal Communication, 1994.
46. K. Moshirvaziri. A generalization of the construction of test problems for nonconvex optimiza-

tion. Journal of Global Optimization, 5:21–34, 1994.
47. B. M. Mukhamediev. Approximate methods of solving concave programming problems. USSR

Computational Mathematics and Mathematical Physics, 22(3):238–245, 1982.
48. K. G. Murty and S. N. Kabadi. Some NP–complete problems in quadratic and nonlinear program-

ming. Mathematical Programming, 39:117–129, 1987.
49. P. M. Pardalos. Integer and Separable Programming Techniques for Large–Scale Global Opti-

mization Problems. PhD thesis, Computer Science Department, University of Minnesota, Min-
neapolis, 1985.

50. P. M. Pardalos and J. B. Rosen. Methods for global concave minimization: A bibliographic
survey. SIAM Review, 28:367–379, 1986.

51. P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Algorithms and Applications.
Number 268 in Lecture Notes in Computer Science. Springer–Verlag, Berlin–Heidelberg, 1987.

52. A. T. Phillips. Parallel Algorithms for Constrained Optimization. PhD thesis, University of
Minnesota, Minneapolis, 1988.

53. A. T. Phillips and J. B. Rosen. A parallel algorithm for constrained concave quadratic global
minimization. Technical Report 87–48, Computer Science Department, Institute of Technology,
University of Minnesota, Minneapolis, 1987.

54. A. T. Phillips and J. B. Rosen. A parallel algorithm for constrained concave quadratic global
minimization. Mathematical Programming, 42:421–448, 1988.

55. A. T. Phillips and J. B. Rosen. Guaranteed "–approximate solution for indefinite quadratic global
minimization. Naval Research Logistics, 37:499–514, 1990.

56. A. T. Phillips and J. B. Rosen. A parallel algorithm for partially separable non–convex global
minimization: Linear constraints. Annals of Operations Research, 25:101–118, 1990.

57. A. T. Phillips and J. B. Rosen. Sufficient conditions for solving linearly constrained separable
concave global minimization problems. Journal of Global Optimization, 3:79–94, 1992.

58. A. T. Phillips and J. B. Rosen. Computational comparison of two methods for constrained global
optimization. Journal of Global Optimization, 5(4):325–332, 1994.

59. J. B. Phillips, A. T., Rosen and M. van Vliet. A parallel stochastic method for the constrained
concave global minimization problem. Journal of Global Optimization, 2(3):243–258, 1992.

60. M. Raghavachari. On connections between zero–one integer programming and concave pro-
gramming under linear constraints. Operations Research, 17:680–684, 1969.

61. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, second edition, 1972.
62. J. B. Rosen. Global minimization of a linearly constrained concave function by partition of

feasible domain. Mathematics of Operations Research, 8(2):215–230, 1983.
63. J. B. Rosen and P. M. Pardalos. Global minimization of large–scale constrained concave quadratic

problems by separable programming. Mathematical Programming, 34:163–174, 1986.

A FINITE ALGORITHM 35

64. J. B. Rosen and M. van Vliet. A parallel stochastic method for the constrained concave global
minimization problem. Technical Report 87–31, Computer Science Department, Institute of
Technology, University of Minnesota, Minneapolis, 1987.

65. H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex nlps and minlps with appli-
cations in process design. Computers & Chemical Engineering, 19(5):551–566, 1995.

66. H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization. Journal
of Global Optimization, 8(2):107–138, March 1996.

67. N. V. Sahinidis. Accelerating branch–and–bound in continuous optimization. Research Report
UILU ENG 92–4031, University of Illinois, Urbana, 1992.

68. N. V. Sahinidis. Baron: A general purpose global optimization software package. Journal of
Global Optimization, 8(2):201–205, March 1996.

69. N. V. Sahinidis and I. E. Grossmann. Reformulation of the multiperiod MILP model for capacity
expansion of chemical processes. Operations Research, 40, Supp. No. 1:S127–S144, 1992.

70. N. V. Sahinidis, I. E. Grossmann, R. E. Fornari, and M. Chathrathi. Optimization model for long
range planning in the chemical industry. Computers and Chemical Engineering, 13:1049–1063,
1989.

71. J. P. Shectman and N. V. Sahinidis. A finite algorithm for global minimization of separable
concave programs. In, C. A. Floudas and P. M. Pardalos (eds.), State of the Art in Global
Optimization: Computational Methods and Applications, Boston, MA, 1996.

72. H. D. Sherali and A. Alameddine. A new reformulation–linearization technique for bilinear
programming problems. Journal of Global Optimization, 2(4):379–410, 1992.

73. H. D. Sherali and C. H. Tuncbilek. A reformulation-convexification approach for solving non-
convex quadratic programming problems. Journal of Global Optimization, 7(1):1–31, July 1995.

74. R. M. Soland. Optimal facility location with concave costs. Operations Research, 22:373–382,
1974.

75. U. H. Suhl and R. Szymanski. Supernode processing of mixed–integer models. Computational
Optimization and Applications, 3:317–331, 1994.

76. N. V. Thakur. Domain contraction in nonlinear programming: Minimizing a quadratic concave
function over a polyhedron. Mathematics of Operations Research, 16(2):390–407, 1990.

77. T. V. Thieu. Relationship between bilinear programming and concave programming. Acta Math-
ematica Vietnamica, 2:106–113, 1980.

78. N. V. Thoai and H. Tuy. Convergent algorithms for minimizing a concave function. Mathematics
of Operations Research, 5:556–566, 1980.

79. N. V. Thoai and H. Tuy. Solving the linear complementarity problem through concave program-
ming. USSR Computational Mathematics and Mathematical Physics, 23(3):55–59, 1983.

80. H. Tuy. Concave programming under linear constraints. Soviet Mathematics, 5:1437–1440, 1964.
81. H. Tuy. Effect of the subdivision strategy on convergence and efficiency of some global opti-

mization algorithms. Journal of Global Optimization, 1(1):23–36, 1991.
82. H. Tuy and R. Horst. Convergence and restart in branch–and–bound algorithms for global

optimization. application to concave minimization and DC optimization problems. Mathematical
Programming, 41:161–183, 1988.

83. T. V. Tuy, H., Thieu and Thai N. Q. A conical algorithm for globally minimizing a concave
function over a closed convex set. Mathematics of Operations Research, 10:498–514, 1985.

84. V. Visweswaran and C. A. Floudas. New properties and computational improvement of the gop
algorithm for problems with quadratic objective functions and constraints. Journal of Global
Optimization, 3:439–462, 1993.

85. P. B. Zwart. Computational aspects on the use of cutting planes in global optimization. In,
Proceedings of the 1971 Annual Conference of the ACM, Association for Computing Machinery,
pp. 457–465, 1971.

86. P. B. Zwart. Nonlinear programming: Counterexamples to global optimization algorithms. Oper-
ations Research, 21:1260–1266, 1973.

87. P. B. Zwart. Global maximization of a convex function with linear inequality constraints. Oper-
ations Research, 22:602–609, 1974.

