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Abstract. Researchers first examined the problem of separable concave programming more than
thirty years ago, making it one of the earliest branches of nonlinear programming to be explored.
This paper proposes a new agorithm that finds the exact global minimum of this problem in afinite
number of iterations. In addition to proving that our algorithm terminates finitely, the paper extends a
guarantee of finitenessto all branch-and-bound algorithmsfor concave programming that (1) partition
exhaustively using rectangular subdivisions and (2) branch on theincumbent solution when possible.
The algorithm uses domain reduction techniques to accelerate convergence; it solves problems with
as many as 100 nonlinear variables, 400 linear variables and 50 constraints in about five minutes
on an IBM RS/6000 Power PC. An industrial application with 152 nonlinear variables, 593 linear
variables, and 417 constraints is also solved in about ten minutes.
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1. Introduction
This paper addresses the separabl e concave programming problem:

. globa min f(x)
(SCP): subjecttoxz € DN C

where z = (z1,...,2,) € R". Given are C' = H?:10j1 Cj = [lj,Uj], and
lj,uj € RU {—o00,+0}; f(z) = Z;-L:lfj(:ﬂj), fi - R = R, and for each j,
f; concave and bounded on Cj; D = {z : }i_q aijjz; < b,i = 1,...,m}, and
a;j, b; € R; andlastly D N C assumed to be bounded.

Concave minimization has been a central problem in global optimization since
its inception. From the viewpoint of computational complexity, SCP is NP-hard.
Even checking whether a given feasible point is a local solution is itself an NP-
hard problem [48]. Due to the NP-completeness of SCP, large classes of dissimilar
problems from a variety of disciplines can be reformulated as SCPs, e.g., integer
programming problems [25], [27], [60]; max-min problems [19]; linear and non-
linear complementarity problems [41], [77], [79]; quadratic assignment problems

* Address al correspondence to this author (e-mail: ni kos@i uc. edu).



2 J. P SHECTMAN AND N. V. SAHINIDIS

[2], [39]; and 3-dimensional assignment problems[23]. Yet, specia properties and
solution approaches can make SCPs more tractable than many NP-hard problems.

The industrial applications of concave programming range widely and run
deeply through the gamut of product and process planning (see [33, pp. 11-14],
as well as [6]). Many SCPs in operations research stem from economies of scale
and fixed-charges, with applications arising in communications network planning,
hydraulic network planning, chemical process network planning, plant location
problems, and inventory and production scheduling. Not surprisingly, the state-of-
the-art demands fast, optimal solution of SCPs.

Extensive surveys of concave programming methods are given by Horst [31],
Pardalos and Rosen [50], Benson [6] and in the books by Pardal os and Rosen [51],
Horst and Tuy [33], and Horst, Pardalos, and Thoai [32]. In brief, the three most
tried strategies are: enumerating extreme points of the feasible domain [8], [12],
[17], [18], [42], [43]; cutting-planes [2], [11], [13], [26], [29], [37], [78], [80],
[83], [85], [86], [87]; and branch-and-bound [4], [6], [8], [9], [10], [11], [21], [20],
[301, [36], [44], [47], [53], [54], [53], [56], [57]. [38], [62], [63], [73], [74], [82].
Algorithms for the more general case subject to nonlinear constraints, such as[5],
[7], [34], generally combine branch-and-bound with cutting planes.

Our agorithm is a variant of branch-and-bound that is specialized for opti-
mization over polyhedra. The main contributions of the work are to prove that a
particular branching rule ensures finiteness and to demonstrate that a collection of
domain reduction techniques accelerate convergence, making routine the solution
of problems with as many as 100 nonlinear variables, 400 linear variables and 50
constraints in a matter of minutes on an IBM RS/6000 Power PC. A preliminary
version of thiswork was presented at the 1995 Princeton University Conferenceon
the State of the Art in Global Optimization [71]. In all areas addressed by the work,
the current paper includes major additional material. To wit, (1) the theory and its
proof have been strengthened, in particular, the finiteness results do not require
the global optima to be isolated; (2) the section on acceleration devices has been
expanded with the addition of new technigques based on parametric programming;
finally, (3) we display improved computational results based on a more recent
implementation.

The remainder of the report is structured as follows. Section 2 comprises a
statement of the proposed al gorithm and Section 3 contains a proof of itsfiniteness.
Section 4 provides finite variants of the relaxed algorithm of Falk and Soland
[21], and the algorithms of Kalantari and Rosen [36], and Phillips and Rosen
[54]. Section 5 describes domain reduction techniques that accelerate the solution
process. Computer implementation is discussed in Section 6, along with numerical
results.
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2. Algorithm
2.1. BACKGROUND AND OUTLINE OF ALGORITHM

Thealgorithm combines standard branch-and-bound procedureswith anew branch-
ing rule and accel erating devicesto which werefer as domain reduction techniques.
To emphasize the importance of the domain reduction techniques, we sometimes
refer to the algorithm as a branch-and-reduce method (Section 5 deals with these
acceleration devices in detail). The procedure will now be formally outlined. In
thefollowing algorithm, wordsin italic letters constitute the critical operationsand
will be discussed separately.

ALGORITHM 1.
I nitialization

Preprocess the problem constraints D N C' to form a bounded initial hyperrect-
angle C°. Add the problem min f(z) st.z € D N C° to the list S of open
subproblems.

Set U +— +o0.
Choose aninteger 2 < N < oo to be used in branching.

Let &k «+— 0. At eachiteration k of the algorithm,

do (Step k)

Step k.1. Select asubproblem s, defined asmin f(z) st. z € D N C*k, from
thelist S of currently open subproblems. S «+— S\ {si}.

Step k.2. Bound the optimum of subproblem s;, from above and below, i.e.,
find o+ and g satisfying o’ > min{f(z) st.z € D N C%} > (.
By convention, o’ = 3% = +ooif DNC*®F = (), i.e, if s isinfeasible.
If 3% < 400, afeasible point z+ € D N C* such that f(z®*) = a’*
will be found in the process.

Step k2.a. L +— mingegsygs,y 8% 1 f(2%) < U then 7 «— z°F and
U+— f(2).

Step k.2.b. If U = L, then terminate with optimizer z.

Step k2.c. S «— S\ {s: pB° > U} (fahoming rule). If g > U, then
goto Step k.1 (select another subproblem).

Step k.3. Branch, partitioning C** into two new elements C'*t and C*#2. They
satisfy Cxt U Ck2 = Ck and C5x1 N Ck2 = 9Ck1 N JC*2, § +— SU
{sk1, sk2},1.€., appendthetwo subproblemsmin{ f (z) s.t. x € DNC*+1}
and min{f(z) st. z € D N C**2} to thelist of open subproblems.

For selection purposes, %+, 552 «— 5k; okl k2 «— F;

Bk, B5k2 +—— Bk (inheritance of bounds).
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Let £k «— k + 1, and goto Step k.1.

end do

Anin-depth discussion of thecritical operations preprocessing, bounding, selec-
tion, and branching now follows.

2.2. PREPROCESSING
OPERATION 1. PREPROCESSING.

For any variable z; that is unrestricted from below, i.e, [; =
—o0, replace [; in C; with the solution to the linear program
minz; st.z € D N C; and for any variable z; that is unrestricted
from above, i.e., u; = oo, replacew; in C; with the solution to the
linear program max z; st.z € DN C.

The solution of these linear programs (L Ps) yields a bounded reformulation of
SCP. Inthe processof solving these L Ps, the algorithm recordsthefeasible solutions
that it encounters as preliminary bounds for use in domain reduction. Optionally,
this procedure may also be applied to restricted variables, which frequently results
in atighter problem formulation.

2.3. BOUNDING

The algorithm determines bounds on each concave subproblem s, (of Step £.2) by
solving alinear programming relaxation which is formulated in the usual fashion.
For each univariate concave term f;(x;) in the objective, first construct the linear
underestimator, call it g;(x;), that intersects f;(z;) at the current bounds 73+ and
uj* of z;. Itiswell knownthat g3* (;) isin fact the convex envelopeof f;(z;) over
[I3*, u3*]. 1t is also well known that the convex envelope of a separable function
f(z) = 37_1 fj(z;) over arectangular set C** isthe sum of the convex envelopes
of itsindividual terms f;(x;) taken over their respectiveintervals Oj’“ [21]. Hence,
the convex envelope of f(z) over C% is g (z) = Y7_4 g;* ().

OPERATION 2. BOUNDING (Step &.2).

Definethe LPrelaxation of s asming®:(z) st.z € DNC*¢. Let
w’* beabasic optimal solution of thisL Prelaxation. A lower bound
on the optimum of the concave subproblem is given by g% =
g°* (w**), and an upper bound may be obtained by evaluating
a’t = f(wk).
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2.4, SELECTION

In Step k.1 of each iteration k, the procedure selects a single subproblem to
be considered for bounding—specifically, a subproblem from the list of open
subproblemswhich has the the least lower bound.

OPERATION 3. SELECTION RULE (Step k.1).
Select any s;, € S suchthat g5 = L.

2.5. BRANCHING

Asdescribedin Step k.3, branching replacesthe partition element C'** with two new
elements. In this manner, the algorithm constructs a binary tree of subproblems.
Hence, every element formed in the course of the procedure belongs to a unique
level of this tree. If the level of s, isamultiple of N, the algorithm selects for
partitioning a longest edge of C+ (from among those edges corresponding to
nonlinear variables), and bisects this edge. This measure is included to ensure
finiteness.

In a typical iteration, however, the partitioning rule selects an edge that cor-
responds to a variable most responsible for the gap (at the LP solution) between
the concave objective f(w®*) and itslocal underestimator ¢g°* (w*®*). The rule then
bisects the selected edge.

The partitioning rule has one additional twist. If the best solution currently
known lies within the C*+, it will be used as the branching point instead of the
midpoint, (provided this resultsin two strictly smaller elements). Branching on the
best solution currently knowniskey to guaranteeing thefiniteness of the procedure.

Below, 5 istheindex of the partitioning variable, p is the partitioning point, N
isauser supplied parameter in the initialization step of the algorithm, £(s;) gives
thelevel of the treeto which subproblem s, belongs, 7+ denotesthe set of indices
of variables nonlinear on C**, % is the best solution currently known (f (z) = U).
The partitioning rule is now stated more precisely.

OPERATION 4. PARTITIONING RULE (Step £.3).

if L(s;) mod N = Othen
j' € argmax;e 7, (ujF — 13F),
(anonlinear variable corresponding to alongest edge of C**),
p=(u} —13)/2,
(bisect [lj,’“,ujl“]).

else
J' € agmax;e 7o [£3(w]*) — g7+ (@),
(avariable with largest underestimation gap at wj-’“).

if & € C% and Z; €]I5F, ujf[ then
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p = i%j’-
(partition through ).
else

p=(uzf —13)/2,

(bisect [z%, jk]).

endif
endif
Split the domain C*+=[T}_, C7*=[T}_ [lj’“, u;*] into two subdomains

[lSkap] ]H];ﬁ] [ljka jk] and [p iy U 3! ]H];ﬁ] [ljka jk]

Note that the proposed partitioning rule successively refines the initia rect-
angular set C° of variable bounds through the course of the branch-and-bound
procedure. Moreover, each partition element isitself arectangular set. In branch-
and-bound algorithms, rectangular partitioning is the most natural choice when
minimizing a separable function, because of the ease in bounding. Tuy [81] treats
non-rectangular partitions for branch-and-bound.

3. Convergenceand Finiteness

For the general branch-and-bound procedure, it can be easily shown that if the
bounding operation is consistent and the selection operation is bound improving
then the procedure is convergent (see [33, 1V.2] for definitions and relevant the-
orems). We now show that the proposed algorithm possesses a much stronger
property than convergence, namely finiteness.

The proof is by contradiction. Consider the tree of subproblems generated by
the branch-and-bound procedure, and assume that the algorithm is infinite. By this
assumption, the algorithm must generate at least one infinite sequence {C*¢} of
subdomains C'%e that are nested, i.e., satisfying C*«+1 C ('%e, where g indicatesthe
level of the tree to which subproblem s, belongs. The following lemmas deal with
such a sequence. They show that any path descending from the root of the tree will
terminate at finite length.

LEMMA 1. lim,_, 0 (uj’ —13*) = 0, for all j € 7% (exhaustiveness).

Proof. This property follows from the fact that every finitely many levels
along the path the algorithm bisects a longest edge. It suffices to prove that
limg s 00 MaX;e 720 (u" — 13") = 0, meaning that for given ¢ > 0, there exists
M > 0 sufficiently Iarge such that for ¢ > M, max;eczs (u)’ —I}') < e. Let
A denote max jo( lo)—from among j € J°, a Iongest edge of the ini-
tial box C°. Every N levels along the path, the algorithm halves the length of a
longest edge from among j € J*¢. Hence, when ¢ > |7°| N, maX;c 7= (u}" —
I5) < 3A; when ¢ > 2|J°| N, maxjc g (u;” — I;%) < ZA; etc. In gener-

]

al, maxje g (uj' — 1) < 1L‘J0|NJA If we seek 1L|7°|N A < e, we must have
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- 0
{WJ > log, &, in other words, % > log, 2. It followsthat we need
q > |J°| Nlog, 2 +¢mod|7° N,whichisat most|J°| N log, 2 + |7 N — 1.
Let M = |J° N (log, 2 + 1), and Lemma holds. 0

LEMMA 2. lim,_, [ f (w®e) — %] = O (consistency).

Proof. Case (i): For some @ < oo, f(x) iscontinuouson C* for al ¢ > Q.

Recall from Section 2.3 that 3%« = g¢°¢(w"?), where g%« is the objective, and
w*e the solution of the relaxation of s,. Consider the components f; of f from
which the respective components g;‘? of g% arise.

If for some (Q < oo, f; becomeslinear on C;Q, thenVq > @, f; remainslinear
on C}*. By the nature of its underestimator g;*, f;(z;) — g; (z;) = 0,Vz; € C;*,
in particular for w;".

If, on the other hand, f; is continuous yet nonlinear on qu for dl ¢, the argu-
ment resembles one in [81]. Since j € J*¢, by Lemma 1, limy oo (u;" —1;") =
= 0. Also,

0. Hence, as f; is continuous on C}*, lim ‘fj(uj")— Fi(15)
My oo | £5(w3*) = £3(u5%)] = 0, since |wi* — u?| < Jus — 157

Note that qu may be expressed as Aqu +(1- A)ujq, for some0 < )\ < 1.
Asg;” islinear, g;* (w;") may be expressed as Ag;* (I3*) + (1 — A)g;" (u;"), which
is the same as A f;(1;*) + (1 — X)f;(u;"), owing to the way g;* is constructed.
Hence we find that \ Fi(u) — g2 (i) |= A \ Fi(ul) — (50
‘fj(u;q) — f;(13")|. From the triangle inequality,

U

, which is at most

Filwi) = g7 (@) < |fiwi?) = fi(u5?)
i) = £i(u5")

+ £ = g5t (i)

+ ‘fj(@") — £ ()]

IN

Therefore, lim,_, o[ fj(w;") —g; (wj")] < 0. Thereverseinequality holds because,

by design, g;’ underestimates f; over C;;*. Thus consistency is proved for the
continuous case.

Case (ii): f(z) isdiscontinuous on C*« for all q.

It iswell known that a function concave on a closed set may have discontinuities
only along the boundary of the set. Accordingly, f;, which was assumed concave
on C? = [12,u9], may be discontinuous only at 12, a 2, or at both. In the event
that f; is discontinuous at both /? and 9, Lemma 1 will eventually ensure that

[15%,u3"] € [i%, 9] in the proper sense, since a discontinuity implies that j € J.
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Without loss of generality then, assume that if f; has a discontinuity in Cj", it
occurs at only one endpoint of the interval, say lj". Let D bethe set of indices of
discontinuous varigbles. Then, for j € D, I = 12, and z; €13, u}"[ necessarily
impliesthat f;(x;) — g;*(x;) > 0.

As f; is continuous relative to ]I g u’?], f+( ) = Iiml, St fj(z;) exists.
Moreover, sinceVj € D, f; isconcave yet dlscontlnuousall] ,7] = f;r(qu) —
f(1;) > 0.Inthepresent case, j € D impliesthat j € J*,Vq, sothat, by Lemma
1,¥s > 0,3Q] sufficiently large such that for ¢ > Q7, u}* — 19 < 4. Also, the
extension defined by

{ fi(z;), whenz; e]lj",ujq]

J’J

£ (1), whenz; =
|scont|nuousrelat|veto [lj ; u; u3’],in partlcularatls" Hence, Ve > 0, 34 such that
— 12 < ¢ implies |f;(u;") — £ (1;")] < e. Smceqxj > 0, we have that VK
%{tlsfymgo <K < 7},3@3 such that ¢ > Q! implies fi(ui?) = £ (1) <
v - K. ‘
Simultaneously, ¢ > Q7 aso implies that f;(u;’) — f;(I;*) > O, because
vP-K <~} =f(1;")—f;(1;") andsoq > Q7 ensuresthat | f;(u;*)— f;7 (I5*)] <
f (157 = £;(157). By thetriangle inequality,

7 < Fit) = GO+ [ (57) = £057)),
or

fiu3") = £

Y

v = | fist) = )]
> 5 = () — K)
= K>0.

Also, by Lemma l, VK, M > O, SQJé sufficiently Iarge sqch that for ¢ > Qj,
uj' — 19 < K/M. Therefore, VM > 0,q > max;cp{@], @3} implies

Sq
B9 =50y vien
Uy~ l]
Now, for all the continuous variables z;,j € C := {1,...,n} \ D, f; is con-
tinuous, bounded, and concave on the entirety of [I3%, u>?]. Vla Theorem 24.1 of

Rockafellar [61] and the Mean Value Theorem, we (;b'[alf’]

(54
—00 < f] ( ) f]( ’U,SZ _{;q(] ) < fjl_k(l;q) < 400,
J J

where f;', f;', aretheleft, right derivatives of f;, respectively.
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Finally, then, if we examine afeasible direction d of the LP relaxation of s,, we
find that d is an ascent direction if

Filui") = £33
cd=3""i R g s 0,
; (ujq _ qu) J >

LetB:={z:z; = l;’,Vj € D}. Supposethat d is adirection going from avertex
z1 of D N C* through a second vertex =2 of D N C%, wherez! € DN C% N B
and 2> € D N C* \ B. Thuswe have d; > 0,Vj € D with d; > 0, for some
j € D.Ontheother hand, V;j € C, d; may be positive or negative. We have already
shown that for big enough ¢, ¢; stays positive and can be made arbitrarily large for
any j € D, whilej € C, ¢c; may be negative, but remains bounded. Therefore, 3Q
suchthat ¢ > @ implies that
Fi(ui") = £33
D T R

j j jec

orcd > 0.

AsC* N\ ;" = 12,¥j € D, C* always contains apoint of B. Furthermore,
such a point will always be in D N C«. Were this not the case, then after some
finite ¢, wewould have D N C*« = (), and the algorithm would discard s, contrary
to the assumption that s, was part of an infinite sequence. Thusfor al ¢ > @, only
vertices z of D N C% satisfying z; = I;* =19,V € D solvethe LP relaxation of
subproblem s,,.

Therefore, for ¢ > Q, fj(w') — g;*(w*) = 0,Vj € D, because the uni-
variate relaxations g;* are exact at the endpoints of C*, in particular /. That
liMy 00 fi(w®e) — gjq (w®) = 0,Vj € C follows by the argument of Case (i). O

(i) = £

W =

LEMMA 3. For ¢ = 1,2, ..., the corresponding subdomain D N C* contains a
global minimum of SCP (convergence).

Proof. By contradiction. If a globa minimum z* is not in D N C%, then
f(w?®) is strictly greater than f(z*). Since there is a finite difference between
f(z*) and f(w®"), we may choose an index ¢ sufficiently large so that, due to
Lemma 2, 5% is made arbitrarily closeto f(w?®e), therefore strictly greater than
f(z*), and therefore strictly greater than any current lower bound L. Due to the
least-lower-bound selection rule, the algorithm will not select s, in the first place,
which contradicts the assumption that s, was part of an infinite sequence of nested
subdomains. O

REMARK 1. By the above lemma, a subproblem s in the sequence has that C*
containsaglobal optimum, z*, of SCP. For any direction d“ from z* that isfeasible
to D N C*, consider the ray =* + kd*, k > 0. The compactness and convexity of
D N C guaranteesthat a unique point z* on this ray satisfies (1 — \)z* + Az €
DNC,0<A<land(1—Nz*+ Xz ¢ DNCA > 1.
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LEMMA 4. After finitely many iterations, any subproblem s in the sequence has
the property that for each global optimizer z* € C* and each direction d* fromz*
that isfeasibleto D N C*, the corresponding z* as described in Remark 1 satisfies
the following trichotomy Vj € J¢:

Either xJA > uj, or xJA < lj, or xJA = x;

Proof. Suppose that for subproblem ¢ in the sequence, I} < z7' < uf, yet

g:;-‘ # x5, foracertain j € J t. After afinite number of additional iterations, the
algorithm will generate a descendant s of ¢ for which either 5 ¢ 7° or by Lemma

1, j satisfiesuf — 15 < |zt — C J*. Hence, for al j € J* for which

z3 # o, either 27! > uf or 2 < I, and s satisfiesthe desired property. O

LEMMA 5. Given a concave function f : R — R nonlinear on [z, y], for some
pointsx,y € Rwithy > x,andgiven A € Rwith0 < A < 1, then

[z + (1= XNy) = f(@)](y —2) > [f(y) = F@)][(Az + (1= Ny) —2](1)

and

[/ (y) = F(@)]ly = Az + (1= Ny)] > [f(y) = f(Az + (1= N)y)l(y — 2)-(2)
Proof. For anonlinear concave function, f(Az + (1 — A)y) > Af(z) + (1
A) f(y). Hence,wemay multiply y > z by f(Az+(1—X)y) —Af(x)—(1—X)f(y
to obtain the valid inequality

[fhz+ (1 =Ny) = Af(z) -1 -Nf)y >
[f Oz + (1= Ny) = Af(z) = (1= ) f(y)le. 3)
By adding (1 — M)[f(y) — f(z)ly + [f(z) — f(i\ + (1= A)y)] to both sides of

(3) we obtain (1). By adding [f(y) — f(Az + (1 — N)y)]y + A[f(z) — f(y)]z to
both sides of (3) we obtain (2). O

LEMMA 6. Given a subproblem s as described in Lemma 4, z* € C* solves the
LP relaxation of s if and only if z* isa global optimizer of SCP. Moreover, any pair
of global optimizersz*, z** € C*, havethat 2 = z7*,Vj € J°.

Proof. Let z* € C° globally optimize SCP. The directions d* from z* fea-
sibleto D N C* fal into two classes based on the uniquely corresponding point
x4 described in Remark 1. In order to think of z* and z4 asthe ‘z’ and ‘v’ of
the Lemma 5, consider the smallest rectangular set containing both C* and z4
that is, TT}_4[min{l}, z/ a1 max{u], 1. Define J*4 to be the set of indices of
variables nonllnear on this set. The first class of directions are those for which
for which 3j € 7°4 such that :v # 7. The remaining directions, for which

zi = x5, Vj € 754, fall mtothesecond class
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Consider any direction d* of the first class. As z* € C*° and 35 € J°4 such
that =7 # z7, the trichotomy of Lemma 4 ensuresthat z* ¢ C*. Also, any point

2 = (1— N)z* + Az?,0 < A < 1 cannot be a global optimizer, as
(L= N)z* + Az > (1= N f(2*) + A f(z?)
> min{f («*), f(z")} = f(z*).
In particular, z** € C* impliesthat z** isnot aglobal optimizer. We show that the
direction d4, given asd* := z# — z*, isadirection of ascent from z* for the LP.
Asd* isfeasibleto D N C*, u§ > IS for all j satisfying =5 # &%, z% < uf for
al j satisfying z7' > u$ and 5 > I7 for all j satisfying z7' < I.
For anindex j € 74 satisfying z4' > u?, apply Lemma5 to the relationships
zi > uf > 15 and 2 > z% > I7 to obtain, respectively
i) = fiUDN () = 15) > [f(2]) — Fi0)](uf — 1) 4
and
[fi(f) = fiUDN s — 25) > [fi() = Fi(@D)](] = 13). (5)
Then multiply (4) by :1:;-‘ — 77 and multiply (5) by u? — I7 to obtain, respectively
[fi (W) = D)z = 1) (2 — )
> [fi(@) = FHUDI(uf — 1) (2] — 27) (6)
and
[fi(af) = FUDN 5 — o) (uf — 1)
> [fi(23) = fi@)](ag = 1) —15). (7)

From (6) and (7), we obtain

[f5(u) = DN = 13) (a7 — )

> [fi(a) = fi(@))) (] = 1) (uf = 15) ®
and since z4* > 1%, we find that
[fi(u) = U5 — 23) > [fj(z5) — fi(=)](ud —15). 9)

Note that if z7 = [7, then (4) is directly equwalent to (9) and (5) is not required.
Similarly, for an index j € J*4 satisfying x < I7, apply Lemma 5 to the
relatlonshlpr <IF <uj andx <z <uj toobtaln respectively

[fi(u3) = fi()) (= 13) > [f5(u3) = fi0D) () — 7)) (10)
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and
Fi(25) = fia))(uf = 27) > [f(uf) = fia))(f - 7). (1)
Thenmultiply (10) by =7 — xA and multiply (11) by »} — I3 to obtain, respectively,
[Fj(u}) = fi(a)) () = 1) (af — a7)
> [f(uf) = FUD)(w) — 27 (] — z7) (12)
and
[£i(@}) = fila)](uf — a7 (uf = 15)
> [f(uf) = fia)](a] — 27 (uf = 15). (13)
From (12) and (13), we obtain
[fi(@3) = fila)](uf — @i (uf = 1)

> [f5 () = FiUD1(w) — 27) (=} — z7') (14)
andsmceu >:v , we find that
i) = fi (@ = 15) > [f;(uf) — f;0))(z} — =) (15)

which is equivalent to (9). Note that if 27 = «?, then (10) is directly equivalent to
(15) and (11) is not required.
Of course, for the linear variables j ¢ 754,

[fi(u) = FiUDN s = %) = [f(2) = fi()) (uf = 13) (16)
From the optimality of z* to SCP,

i) = fi(=5)] = 0

J
Let F := {j : «4 # x7}. Then we may write

S 1fi(z3) = fi(2%)] > 0, sothat

JEF

S Uity = £ T (s — 1) > 0, or

JEF heF

M) = fiEws =) I (i -1) >0 (17)
jEF heF\{j}

Overestimating some terms of (17) with (9) and using (16), we then obtain

Y1) = £ g =23 [T (uh —17) >0

JEF heF\{j}
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or
f](uj) - f](l]s) A A
Z —(US I (zj — %) = chdj > 0.
JjEF VR j
Hence, d* isadirection of ascent from z*.

Next consider any direction of the second class (z' = «%,Vj € J°4), and
observe that f[(1 — N)a* + Az = (1 — \)f(z*) + Af(z?). Hence, a point
2 = (1 - N)a2* + Xz?,0 < X < 1, isagloba optimizer if and only if z* isa
global optimizer.

For linear variables z;, f;(x;) must be of the form a;x;, with the coefficients
a; € R.AsJ* C J%4, for j ¢ J°, fi(z;) takesthis form, and as g°* is also
Iinear,SOgjk(xj) = fj(z;) = ajz;,Y5 € J°. Thisshowsthat for the LP objective

¢,

O_{Qjejs
R TR R VAR

and

cd?d = Z aj (0534 — xj) = Z (013-0534 — ozjxj)

ieT ieT
= Y [fie]) = file)] = f @) — f (")
igT

Hence, if = is not a global optimizer, then f(z*) — f(z*) > 0 and d increases
the LP objective, but if 2 is aglobal optimizer, then f(z4) — f(z*) = 0, so that
d* does not change the L P objective.

Therefore, any feasible direction d* from z* either (1) increases the LP objec-
tive, or (2) does not change the LP objective. Consider a point z** = z* + rkd*,
k > 0. In the former casg, if x** € C* then ** is not a globa optimizer. In the
latter case, any feasible z**

isaglobal optimizer. O

THEOREM 1. The algorithm terminates finitely with a global minimum of SCP.
Proof. Given asubproblem asdescribed by Lemmad, it followsfrom Lemma6
that the algorithm identifiesaglobal minimum, 2*, which becomesthe best solution
currently known (z «+ 2*). Asthe trichotomy of Lemma 4 is satisfied in finitely
many iterations, a global minimum is thus identified finitely. In accordance with
the branching rule, s will be partitioned at z unlessthelevel of sisamultiple of N.
In the latter case, at least one of the children of s inherits the above properties, and
we consider it to be s, instead. Thus, the procedure splits s into two subproblems
by introducing apartition through z = z* and branching on an edge corresponding
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to some nonlinear variable. In the event that s contains several global minimizers,
Lemma6 showsthat the coordinatesof such pointsdiffer only inthelinear variables,
hence the constructed partition actually passes through all global minimizersin s
and the relaxation gap at all such pointsis simultaneously reduced.

Hence, each of the resulting partition elements also satisfies Lemmas 4 and 6.
Unlessthelevel of asubproblemisamultipleof IV, the procedure branchesthrough
theincumbent, z, whenever possible. From s, the branching processthus continues
at most [Ni_l |7|] times until some global minimizer, z*, say, isrendered gapless.
If adescendant of s contains a global minimum, then aglobal minimum solvesits
LP relaxation. In other words, a descendant of s at most [Ni_l ||| levels below
s will have alower bound exactly equal to its upper bound and will be fathomed
without any further partitioning.

The same argument applies to a path of the branch-and-bound tree containing
any other global minimum.

Finally, consider any inferior paths of the branch-and-bound tree. There is a
finite difference between the optimum of an inferior path and the global optimum
f(x*). Conseguently, for a subproblem sufficiently far down the inferior path,
the lower bound will be made arbitrarily close to the optimum, therefore strictly
greater than f(z*) = U = L. As the globa minimum will have been found
aready, the fathoming rule (of Step k.2c) will then eliminate all inferior paths of
the branch-and-bound tree from further consideration by the algorithm. O

4. Discussion of Related Algorithms

The proof of Theorem 1 makesit clear that a branch-and-bound algorithm based
on rectangular partitions and linear underestimation terminates finitely for SCP if
the following two conditions are met.

CONDITION 1. For al nested sequences { C*¢} of subdomains C*« generated by
the algorithm limy_, o max;jc 7 (u;* — 15*) = 0.

CONDITION 2. If a subproblem contains a global solution point, the algorithm
ensuresthat in afinite number of iterations the gap between the lower bound on the
subproblemanditsoptimumwill bereduced to zero. For thetype of underestimators
mentioned herein, this condition can be satisfied by constructing a partition of the
subproblem through the said point.

Condition (1) guarantees that eventually a bounds box containing a global
solution will satisfy Lemma4 and therefore the corresponding L P subproblem will
provide the global minimizer asits solution (Lemmas6). Condition (2) then ensures
that branching will reduce the underestimation gap at the global solution point,
eventually rendering the underestimator gapless. At that stage, the subproblem will
be fathomed and U, L will be setto f(x*). All inferior subproblemsare eventually
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fathomed, as happensin any convergent branch-and-bound algorithm. Conditions
(1) and (2) in hand, we can design finite branch-and-bound algorithms for SCP.

For example, Falk and Soland give a ‘relaxed’ agorithm (FSR) which they
prove to be convergent. Falk and Soland also claim the algorithm to be finite for
SCP, athough its finiteness is brought into question by Horst and Tuy ([33, p.
362]). While the finiteness of FSR remains an open question, a slightly modified
version of the FSR algorithm can be proven finite by the same theorem offered
above to prove finiteness of our algorithm. The existing branching rule of FSR is
an w-partitioning:

OPERATION 5. w-PARTITIONING.

Variable Selection

§' € argmax;e 7 [f () — g ()]

(anonlinear variable with largest underesti mation gap).
Point Selection

p=w’k

(solution of relaxed problem).
Split C* into two subdomains:

[lSkap] ]H];ﬁ] [ljka jk] and [p iy U 3! ]H];ﬁ] [ljka jk]

The rule meets Condition (2), (provided that z* = w* for some ¢ < o), yet,
it fails to meet Condition (1). The following modification, however, meets both
conditions:

OPERATION 6. MODIFIED w-PARTITIONING.

Given apositiveinteger N.

if E(sk) mod N=0 then
j' € argmax;;¢ 7 (ujh —13)
(the vanable correspondl ng to alongest edge of C*).
p=(ujf —13})/2

else

Select 5/ and p asin the unmodified rule.
endif
Split Cs* at p, j'.

By modifying the w-branching rule to bisect alongest edge of the selected subdo-
mainevery Nthlevel of thetree, Condition (1) ismet. Thefinitenessof the modified
algorithm follows, since FSR performs bounding and subproblem selection in the
same manner as the algorithm proposed in Section 2.

Kalantari and Rosen specialize their algorithm [36] for quadratic concave pro-
gramsthat can be stated asmin3-7_; ¢;z; — 3);27 st. = € DN C. Thealgorithm
isproven convergent. Therefore, it terminatesfinitely to an e-approximate solution.
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(An e-approximate solutionisasolution, call it z°, that satisfies|f (z°) — f(z*)| <
e, where z* isaglobal optimizer and ¢ is a prespecified tolerance). The agorithm
uses the following fathoming rule (Here, ¢ > 0 isrequired for finite termination;
S isthelist of currently open subproblems; U isthe current least upper bound; and
(% indicates the lower bound of subproblem s):

OPERATION 7. e-TOLERANT FATHOMING RULE.
S+ S\ {sst.g>U —¢}.
This algorithm also employs the following specialized branching rule:

OPERATION 8. KALANTARI-ROSEN PARTITIONING.

Variable Selection

j' € argmax; e 7 A (uj* —13)%.
Point Selection

Let.p = (ujf —13F)/2.

Split C** at p,j’.

This rule meets Condition (1) but not Condition (2). To render this algorithm finite
without recourse to an e-tolerance, one can modify the branching and fathoming
rulesasfollows (Recall that z indicates the best known solution in the current stage
k of the procedure):

OPERATION 9. MODIFIED K-R PARTITIONING.

Variable Selection

j' € argmax; ; Aj(ujt —155)?

(First choose 5’ according to the existing rule).

Point Selection

If & € C* and &0 € (I3F,ujl) then
Choosep =z

else

Letp = (ujf —13F)/2

(choose p accord% ng to the existing rule).
endif
Split C** at p, 5'.

OPERATION 10. MODIFIED FATHOMING RULE.
S« S\ {sst.p > U}

The change in branching rule enables the algorithm to begin fathoming a sub-
domain which contains a global optimizer as soon as that point is known from
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bounding. Moreover, the change in fathoming rule precludes the said subproblem
from being prematurely fathomed. In tandem, the modified fathoming and parti-
tioning rules enable this algorithm to converge finitely to a global minimum. The
paralel algorithm of Phillips and Rosen [54] can be similarly modified to ensure
finite convergence to a global minimum.

A discussion of proceduresfor SCP could hardly be complete without reference
to the algorithm of Soland [74]. Soland’s algorithm attains finiteness not by its
branching strategy, which is the same w-subdivision employed in FSR, but by
means of adifferent bounding strategy. In formulating the L P relaxation of agiven
subproblem sy, the procedure first constructs the linear underestimator ¢+ () in a
fashion identical to FSR and the proposed agorithm (see Bounding, Section 2.3).
Soland’salgorithm then determinesthelower bound 35+ by minimizing g*+ (x) over
the original set of bounds D N C, rather than D N C%+. Naturally, this produces
lower boundsthat are weaker than the ones in the bounding procedure used here.

The proposed algorithm relies on the same subproblem for lower bounding
and locating the optimum. In more general terms, the algorithm employs a simple
relaxation that gradually approximates the objective, rather than requiring the
gradient of the objective in explicit form. In contrast, finiteness results of Al-
Khayyal and Kyparisis ([1]) require the objective function to be differentiable, and
rely on the solution of additiona auxiliary problems that involve the gradient of
the objective. Moreover, the proof of finiteness for the proposed algorithm rests
exclusively on the geometric properties of the problem domain without use of its
analytic representation. As a consequence, the result is more readily applicable
than that in [1], which requires the analytic specification of the polyhedron to be
nondegenerate at the solution point.

5. Acceleration Devices
5.1. USE OF ACCELERATION DEVICES

This section describes techniques which are not required for finiteness, nor even
convergence of the algorithm. However, we have found that their incorporation in
the algorithm is necessary to ensure termination in reasonable computing times.
The techniques aim at reducing the domains of the problem variables. As a result
of shrinking these regions, the LP bounds developed over the smaller regions are
tighter and the size of the branch-and-bound tree smaller. Techniques similar to
some of the ones given below have long been used in integer programming, e.g.,
[75]. For concave programming and other continuous global optimization, similar
techniques have been used by Thakur [76], Hansen, et al. [28], Sahinidis [67],
Lamar [38], Ryoo and Sahinidis [66], [65], and Sherali and Tunchilek [73]. For a
comparative survey of this literature see [66], [65].

The acceleration devices given in Section 5.2 employ linear parametric pro-
gramming methods, that is, extensive dual information obtained through exchange
of basisin the relaxed problem. Section 5.3 deals with acceleration devices based
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on sensitivity analysisonly, that is, dual multipliersthat are obtained directly from
the solution of the relaxed problem, without basis exchange. Finally, Section 5.4
provides techniques that do not require dual information at all.

Consider the LP relaxation min ¢*(x) st. z € D N C* of concave subproblem
s. Let w* be a point that solves this relaxation, let 3° := ¢°(w®), and let U be a
known upper bound on the global solution.

5.2. ACCELERATION DEVICES EMPLOYING LINEAR PARAMETRIC PROGRAMMING

TECHNIQUE 1. Generating valid inequalities by using linear parametric pro-
gramming to change the left-hand sides of existing constraints:

Widely used methods, discussed in, e.g., [24], track the optimum of an LP
when a particular constraint Z?:l a;jz; < b; is perturbed from its current value
>_j—10aijw; by aquantity ;. For an LP minimization problem, this parametric
function 87 (y;) is well known to be convex. As p; is decreased from zero, let [T
denotethe value of (3_7_; a;jw;) + i for which 87 (u;) = U or the perturbed LP
becomes infeasible, whichever of the two is greater. Similarly, as p; is increased
from zero, let u] denotethevalue of (3°7_; ajjw;) + pi for which 87 (u;) = U or
the perturbed L P becomes infeasible, whichever of the two islesser. Since 5™ (1)
is convex, it must be greater than U for any feasible values of (3°7_1 ajjwj) + i
lessthan [T or greater than «, if such values exist. Hence, the inequalities

n
s
> aijzm > 1]
j=1

and

n
> aijz; <uf
j=1
arevalid for s.

TECHNIQUE 2. Tightening bounds by using linear parametric programming to
change the values of variables:

Consider avariable z;, to be perturbed fromits current valuews; by A;. As A; is
decreased from zero, let /7 denotethevalue of w; + A; for which 5™ (A;) = U orthe
perturbed L P becomes infeasible, whichever of the two is greater. Similarly, as A;
isincreased from zero, let u] denotethevalue of w; + A; for which 3™ (X;) = U or
the perturbed L P becomes infeasible, whichever of the two islesser. Since 57 (\;)
is convex, it must be greater than U for any feasible values of w} + A; lessthan I7
or greater than 7, if such exist. Hence, the constraints

Tj > l;-r
and

zj < u;r
arevalid for s.
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5.3. ACCELERATION DEVICES BASED ON SENSITIVITY ANALYSIS ONLY

The domain reduction techniques in this subsection are special cases of those
developed by Ryoo and Sahinidisin [66], [65].

5.3.1. Domain Reduction by Use of Available Marginal Values

TECHNIQUE 3. Generating mirror inequalities by using sensitivity analysis with
respect to b;:

Consider alinear constraint z;;;l a;jr; < b; that is active at w*® with a dual
multiplier value of nf < 0, and consider further, perturbing its current right-hand
b; by aquantity ;. For all valuesof 1; for which the perturbed LPremainsfeasible,
the affinefunction £ ;4 3° islessthan or equal to the parametric function 87 (1),
since the latter is convex. As ; is decreased from zero, let [ denote the value of
i for which pgpu; + 85 = U. It followsthat 5™ (11;) must be greater than U for any
feasible values of b; + y; lessthan [7, if such exist. Hence, the mirror inequality

v-4

7

n
Zaijxj Z lig = bi +
j=1

isvalid for s.

TECHNIQUE 4. Tightening bounds by using sensitivity analysis with respect to /*
or us:

Consider a domain-bound z; < u? that is active at w* with a dual multiplier
valueof A7 < 0, and consider further, perturbing the bounding value u; by A;. For
al values of \; for which the perturbed LP remains feasible, the affine function
AjAj + B° isless than or equal to the parametric function 57 ();), since the latter
is convex. As J; is decreased from zero, let I7 denote the value of A; for which
AjAj + B° = U. It follows that 57();) must be greater than U for any feasible
valuesof u; + y; lessthan I7, if such exist. Hence, the constraint

o s u-—p
isvalidfor C*. Similarly, consider adomain-boundz; > I7 that isactive at w® with
adua multiplier value of A; > 0, and consider further, perturbing the bounding
vauel; by A;. For al valuesof A; for which the perturbed L Premainsfeasible, the
affine function AJ\; + 3% is less than or equal to the parametric function 57 ();),
sincethe latter is convex. As \; isincreased from zero, let g denote the value of
Aj for which AZX; + 8° = U. It follows that 5™ ();) must be greater than U for
any feasible values of /5 + y; greater than w7, if such exist. Hence, the constraint

U—p
Aj

. o __ 18
r; <wuj =1j+

isvalid for s.
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Figure 1. Comparison of Techniques 2 and 4 for improving alower bound.

5.3.2. Domain Reduction Using Probing to Induce Marginal Values

TECHNIQUE 5. Generating mirror inequalities by probing the slack domain of
constraint :

Consider a linear constraint Z?:l a;jr; < b; that is inactive at w®. Solve
the partially restricted relaxed problem r, defined as ming®(xz) st. = € DN
C* N {¥j-1aijz; > b;}, to obtain a solution point w" of value " = ¢*(w"). If
the constraint has a dual multiplier value of x; > 0 in the solution of r, apply
Technique 3 to the added constraint of problem r, to find that the mirror inequality

- - U—g*w)
Zaijxj Z li = bi —
j=1

r

2
isvalid for s.

TECHNIQUE 6. Tightening bounds by probing the existing domain of variable z ;:

Consider a domain-bound z; < u that is inactive at w®. Solve the partially
restricted relaxed problem r, definedasming®(z) st. = € DNC*N{z; > uj}, to
obtain a solution point w" of value 5" = ¢*(w"). If the bound has adual multiplier
value of A7 > 0in the solution of r, apply Technique 4 to the added constraint of
problem 7, to find that
. U—g*(w)
J /\v]f
is valid for s. Similarly, consider a domain-bound z; > [7 that is inactive at
w?. Solve the partially restricted relaxed problem r, defined asming*(z) st. z €
DnC*n{z; <1}, toobtain asolution point w" of value 8" = g°(w"). If the
bound has a dual multiplier value of A¥ < 0 in the solution of r, apply Technique
4 to the added constraint of problem r, to find that
U—g°(w)

Y

. T _
:nguj—u

. g _ ]S __
xJZZj—l]-
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Figure 2. Comparison of Techniques 2 and 6 for improving an upper bound.

isvalid for s.

5.4. ACCELERATION DEVICES THAT DO NOT REQUIRE DUAL INFORMATION
5.4.1. Optimality-Based Tightening

Optimality-based tightening uses the current upper and lower bounds on the global
solution (U and L, respectively,) to generate constraints that may trim-off inferior
portions of C*.

TECHNIQUE 7. OBT
Usetheleast upper bound.
Compute A}/=U — 3, min f;(u$), f;(15).
CASE (A). There exists a point ng> such that AV = f,(z3) and fy, is
decreasing at g:gA).
CASE (B). There exists a point ng> such that AY = f,,(zP) and £}, is
increasing at xELB).
If CASE (A)A-CASE (B) then
Tp 2> Ty,
isvalidfor s.
If CASE (B)A—CASE (A) then
Th < th
isavalid for s.
If CASE (B)ACASE (A) then
T < xELB) Vx> xELA)
isvalidfor s.
Usetheleast lower bound.
Compute Al =1 — Ej;éh max[l]s’uﬂ fj (ZEJ)
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CASE (C). There exists a point x§f’> such that AL = £,(z§) and fy, is
decreasing at xf).

CASE (D). There exists a point xELD) such that AL = f,,(zP) and f, is
increasing at xELD).

If CASE (C) then
Th < xglc)
isvalid for s.
If CASE (D) then
Tp > xELD)
isavalid for s.

Notethat theinverse f ~* of aconcavefunction f : R — R isitself not necessarily
afunction. For example, consider the case where the relation f, * is one-to-two

and let f, 1" and f, ** denote the upper and lower forks of f, *, respectively.
In this case [I}, 4] can be pared-down to [I3,ui] N {[f, *“(AL), £, (A U
[ (A, £, 2 (AF)]}, which may be disjoint.

5.4.2. Feasibility-Based Tightening

Feasibility-based tightening generates constraints that cut-off infeasible portions
of the solution space.

TECHNIQUE 8. FBT
Consider the constraints Z;’:l a;jr; < b;, i = 1,...,m. Then one of the con-
straints

1 .
zp < CL_ (bl - Z mln{aijuﬁ,aijlj}> , a;p >0

1

TR > — | b — Z max{aijuj,aijlﬁ} , a;p <0
il i#h

isalso valid for each pair (4, j) that satisfiesa;; # 0.

Of course, to tighten variable bounds at subproblem s, one could simply solve
the 2n LPs

{mintz;st.x € DNC*}, (19)

which would provide tightening that is optimal, albeit computationally expensive.
In this regard, the former cuts (18) function as ‘poor man's linear programs,’
particularly when they are applied iteratively, looping over the set of variables
several times.
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L

c

Figure 3. Poor Man's LPs.

Figure 3 shows how an implementation of (18) compares to the solution of
the LPs for different two-dimensional examples. In each instance, the outer box
represents the bound set before tightening begins, with constraints shown in bold
lines and the feasible region shaded. Bounds improved by (18) are shown in solid
line; improvements by (19) are shown in dashed line, when they differ from those
of (18).

In Figures 3a and 3b, techniques (18) and (19) give the same result. In Figure
3c, the effects of (18) agree with the effect of (19) for variable x», while also
improving the bounds on x4, albeit not to the maximum possible extent. In Figure
3d, (18) improves bounds on both variables, although neither bound is improved
to the maximum possible extent. Figure 3e shows the bounds on z;, tightened to
their full extent by (18), but here the heuristic fails to improve bounds on z1, at
all. Figure 3f is particularly insightful as a pathological case for the heuristic. In
the latter case, the bounds are not improved at all, whereas a great deal of bounds
reduction is possible, illustrated by the four LP solutions (dashed lines).
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One can seewhy Figure 3f is pathological for the ‘ poor man’slinear programs.’
The heuristic can make use of only one bound and one constraint at atime, while
linear programming considers the entire constraint set simultaneously. In practice,
a case such as Figure 3f would not occur if all of the 2n LPs are solved initially, in
preprocessing, on aone-timebasis (see Section 2.2, al so Sketch, below). Thereafter,
for each subdomain C*#, at least one bound acts as a non-redundant constraint of
DnNncCs,ie, d(DNC%\ dD # . Findly, note that sometimes the heuristic
achievesits maximum domain reduction asymptotically, e.g., Figure 3b and Figure
3d, where improved bounds on variable z;1 then enable bound improvement on
variable x5 that, in turn, facilitate further tightening of x; on the next pass, etc.

The following sketch illustrates how the Algorithm employs the various tight-
ening techniques given above (see Section 2 for portions omitted here).

ALGORITHM 2. (SKETCH) (Branch-and-Reduce Algorithm).

Initialization Preprocess the problem as detailed in Section 2.2: Solve LPs to
bound unbounded variables and (optionally) to tighten existing bounds.
Using feasible points found in Preprocessing, determine an initial value of U
and apply Techniques7 and 8 to the original domain D N C.

Let &k +— 0. At eachiteration k of the algorithm,
do (Step k). Step k.1. Select asubproblem sy.

Step k.2. Apply all of the Techniques 1-8 to subproblem s;. Bound the
optimum of subproblem s, from above and below, i.e, find o’ and a
revised 5% satisfying o® > {min f(z) st. z € DN C} > 3% .. ..
Step k2.a. L +— mingegsygs,y 8% 1 f(2°) < U then 7 «— =z and

U +— f(2).
If U wasimproved in Step k.2.athen
Apply Techniques 1-8 to the entire set S of open subproblems.
else
Apply Techniques 1-8 only to subproblem sy.
endif
If the domain reduction techniques succeeded goto the beginning of
Step £.2.

end do
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6. Computational Results
6.1. IMPLEMENTATION

The proposed agorithm was implemented using BARON [68], a genera
purpose global optimization software package for solving nonlinear and mixed
integer-nonlinear programs (see [16, 40, 66, 65], and consult
htt p://archi nedes. ne. ui uc. edu for the software and further details).
The strategy used in the package closely follows the presentation of the previ-
ous section. It employs the branch-and-reduce optimization strategy, integrating
conventional branch-and-bound with awide array of domain reduction toolsand a
combination of branching rules. Theimplementation wasdoneon an IBM RS/6000
Power PCin FORTRAN. IBM’sOSL (Release2 [35]) wasused to solvetherelaxed
LPs.

Table 1 provides results for 36 small to medium-sized problems from the liter-
ature. For each prablem, the table providesthe sizein terms of constraint rows and
variables, the source, and results obtained with the algorithm. These experiments
used an absol ute optimality tolerance of ¢ = 10~ throughout, meaning that at any
given iteration, the algorithm deleted all subproblems with lower bounds greater
than or equal to U — €. Here, Nyot, Nopr and Ny,er, denote the total number of
iterations, the node at which the optimal solution was found, and the maximum
number of nodes stored in memory during the search, respectively. It can be seen
that the algorithm solves many of the problems at the root node. Also in the table,
Tiot, Tpre, and Ty, denotethe total time taken to solve the problem, the time spent
on preprocessing, and the time for branch-and-reduce (To: = Typre + Thar)- Toar 1S
broken down further into time spent solving the LP relaxations (7.¢;), time spent
applying the problem-specific domain reduction Techniques 7 and 8 (T..4), and
time spent applying Techniques 3 and 4 which use marginals (7,,,,). No probing
(Techniques 5 and 6) was employed. Evidently, domain reduction using marginals
takes a negligible amount of time. In total, domain reduction took but a small
fraction of the total CPU time.

The results of Table 1 were obtained using the partitioning rule proposed in
Section 2.5, and without any domain reduction based on probing. Table 2 compares
results for different strategies. The omega partitioning rule is considered first. For
the larger problems solved, it appears to construct search trees that are larger
than those formed by other strategies. Omega partitioning could not solve the
last problem (from [45], see also [46]) even after 10000 iterations. On the other
hand, the proposed bisection of the most violated variable provides more balanced
trees and smaller memory requirements. The table also illustrates the effect of
bisection with three different probing strategies considered: no probing, probing
the bounds of asingle variable, and probing the bounds of three variables. Clearly,
increasingly sophisticated search strategies|ead to smaller searchtreesand memory
requirements although the CPU times actually may increase, as probing entails the
solution of additional LPs.
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Table 1. Computationa results for miscellaneous test problems.

Number of Nodes CPU sec IBM RS/6000 Power PC

Problem m n Source Niot Nopt Nmem Tiot Tpre Toar Tret Trea Tmar
Panl 4 3 [49] 3 3 2 01 O 01 O 0 0
Pan2 1 5 [49] 7 2 3 01 O 01 O 0 0
Z 5 3 [86] 7 0 4 01 O 01 O 0 0
BS2 5 3 [3] 7 0 4 01 O 01 O 0 0
BSHU 4 6 [3 1 1 1 01 O 0 0 0 0
KR 5 2 [36] 3 1 2 01 O 01 O 0 0
PhR1 5 6 [52] 1 0 1 01 O 0 0 0 0
PhR2 5 6 [52] 0 0 0 0 0 0 0 0 0
PhR3 5 6 [57] 1 1 1 01 O 0 0 0 0
PhR4 4 3 [52] 3 0 2 01 O 01 O 0 0
PhR11 4 3 [52] 1 1 1 01 O 01 O 0 0
PhR12 4 3 [52] 1 1 1 01 O 01 O 0 0
PhR13 10 3 [52] 1 1 1 01 O 01 O 0 0
PhR14 10 3 [52] 1 0 1 01 O 01 O 0 0
PhR15 4 4 [52] 3 0 2 01 O 01 O 0 0
PhR20 9 3 [57 1 1 1 01 O 01 O 0 0
FP1 1 5 [227] 7 7 3 02 0 01 O 0 0
FP2 2 6 [27] 1 0 1 01 O 0 0 0 0
FP3 10 13 [22] 1 0 1 01 O 0 0 0 0
FP4 5 6 [27] 1 1 1 01 O 0 0 0 0
FP5 11 10 [22] 5 1 3 02 01 01 O 0 0
FP6 5 10 [22] 9 8 4 02 01 01 O 0 0
FP7a 10 20 [22] 73 30 9 12 02 09 06 03 O
FP7b 10 20 [22] 83 32 9 12 02 09 06 02 O
FP7c 10 20 [22] 67 32 9 13 02 1 07 03 O
FP7d 10 20 [22] 59 28 9 09 02 07 05 02 O
FP7e 10 20 [22] 181 66 21 26 02 23 18 05 0O
FP8 10 24 [22] 3 3 2 02 01 01 01 O 0
Rv1 5 10 [64] 33 2 4 03 O 02 02 O 0
RvV2 10 20 [64] 99 13 12 11 02 09 07 02 O
RV3 20 20 [64] 203 23 24 22 02 2 17 02 O
RV7 20 30 [64] 161 5 11 29 04 24 14 1 0
Rv8 20 40 [64] 165 49 18 32 08 24 18 05 O
RV9 20 50 [64] 439 90 65 8 1 7 48 21 O
M1 11 20 [45] 187 4 5 25 02 22 18 03 O
M2 21 30 [45] 281 1 5 71 1 62 48 13 O

Table 3 providescomparative computational resultsfor test problemsthat appear
in Floudas and Pardalos [22]. The table presents CPU times in seconds with num-
ber of nodesin parentheses. Variants of two different branch-and-bound algorithms
are considered, the Reformulation-Linearization Technique (RLT) of Sherali and
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Table 2. Computational results with different search strategies.

Omega Bisection Probing-1 Probing-3

Problem  Niot Nmem Tiot  Niot Nmem Ttot Niot Nmem Ttot Niot Nmem Ttot
Panl 3 2 0.1 3 2 0.1 3 2 0.1 3 2 0.2
Pan2 7 3 0.1 7 3 0.1 7 3 0.1 7 3 0.1
VA 7 4 0.1 7 4 0.1 3 2 0.2 3 2 0.2
BSI2 7 4 0.1 7 4 0.1 3 2 0.2 3 2 0.1
BSH 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
KR 3 2 0.1 3 2 0.1 1 1 0.1 1 1 0.1
PhR1 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR2 1 1 0 0 0 0 0 O 0 0 O 0

PhR3 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR4 3 2 0.1 3 2 0.1 1 1 0.1 1 1 0.1
PhR11 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR12 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR13 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR14 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
PhR15 3 2 0.1 3 2 0.1 3 2 0.1 3 2 0.1
PhR20 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
FP1 7 3 0.1 7 3 0.2 7 3 0.2 7 3 0.2
FP2 1 1 0.1 1 1 0.1 1 1 0 1 1 0.1
FP3 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
FP4 1 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1
FP5 3 2 0.2 5 3 0.2 3 2 0.2 3 2 0.2
FP6 9 6 0.2 9 4 0.2 9 4 0.3 9 4 04
FP7a 81 17 13 73 9 12 23 4 2 31 3 2.6
FP7b 87 20 14 83 9 1.2 15 3 17 11 3 18
FP7c 83 21 15 67 9 1.3 17 3 18 11 3 17
FP7d 71 13 13 59 9 0.9 21 3 2 13 3 19
FP7e 169 36 29 181 21 2.6 79 12 66 79 12 9.6
FP8 3 2 0.3 3 2 0.2 3 2 04 1 1 0.5
Rv1 17 3 0.2 33 4 0.3 5 3 0.3 5 3 0.3
Rv2 75 23 0.8 99 12 11 13 5 11 9 3 11
RvV3 271 66 31 203 24 2.2 25 6 17 17 5 17
Rv7 177 63 28 161 11 29 13 3 18 11 3 19
RvV8 201 28 43 165 18 3.2 19 5 32 13 4 33
RV9 561 113 9.5 439 65 8 5 11 72 39 10 7.5
M1 2713 757 395 187 5 25 117 3 81 41 3 7.3
M2 >10000 9959 >213 281 5 71 115 3 224 113 3 27
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Table 3. Computational results for the Floudas and Pardal os test problems.

Reformulation-Linearization [73] Branch-and-Reduce

Problem m n Tolerance IBM 3090 supercomputer IBM RS/6000 Power PC
(%) LD-RLT-NLP LD-RLT-NLP(SC) R&S[66] proposed
FP5 11 10 1 112 (1) 117 (1) 02 (1
FP6 510 1 161 (5) 1.72 (5) 0.2 (8)
FP7a 10 20 5 8.13 (7) 329 (3 6.88 (35) 05 (15)
FP7b 10 20 5 254 (1) 261 (1) 205 (13) 04 (11
FP7c 10 20 5 13.26 (11) 255 (1) 571 (35) 04 (13)
FP7d 10 20 5 5.04 (5) 261 (1) 210 (13) 0.6 (23)
FP7e 10 20 5 27.00 (25) 1594 (11 11.37 (69) 0.9 (59)

Table 4. CPU seconds for Rosen and van Vliet problems (¢ = 0.001).

Problem m n  G&R86 R&vV87 P&R87 S&S95
Cyber 845 CRAY2 CRAY2 RS/6000

Rv1 5 10 1034 150 011 0.3
RvV2 10 20 2047 18.69 143 11
RV3 20 20 21187 73.84 321 2.2
Rv7 20 30 417.26 118.76 9.16 29
RvV8 20 40 32855 195.53 16.52 32
RV9 20 50 8.0

Tunchilek [73], (seed so[72]), and the branch-and-reducealgorithm. RLT isknown
to produce stronger lower bounds than the more straightforward linear program-
ming underestimation used by branch-and-reduce. As a result, RLT requires the
solution of fewer nodes. On the other hand, the algorithm proposed in this paper
solves much simpler relaxations and therefore requires smaller CPU times than
RLT. In addition, our approach can accommodate larger problems, as the RLT
would introduce prohibitively larger numbers of constraints and variables in the
subproblem relaxations. The algorithm of Ryoo and Sahinidis [66] is Slower than
the one presently proposed, sinceit incorporates only asubset of the domain reduc-
tion techniques used here, it does not perform extensive preprocessing, and it uses
omega subdivision as the branching rule.

Computational results for the Rosen and van Vliet [64] problems are presented
in Table 4. We note that the parallel agorithm P& R87 of Phillips and Rosen [54]
serves as the current benchmark for quadratic programming. One can draw an
important conclusion by comparing the entries of this table. Today on a standard
engineering workstation, we can solve in afew seconds the same problems which,
until recently, required several minutes of CPU time on large mainframes.
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The algorithm was also applied to randomly generated large-scale problems of
the form:

' 1 n B k
min 5912/\]'(%]' —w]')z-l-QQZdjyj
subject to { A + Agy < b

z>0y>0 7’
where

z,\, 0 € R",

y,d € Rk,

be R™,

A1 € ™",

Az € R™F,

01,0, € R.

The values of the parameters 61 and 0, are 0.001 and 0.1, respectively. Such
problems have been studied by Phillips and Rosen [54] and Visweswaran and
Floudas[84]. The data for the constants A, @, d, b, A3, and A, were generated by
the same routines used by [54] and [84].

Table 5 presents computational results for problems of different sizes of m,
n and k. The data for the GOP algorithm are taken from [84] and the data for
the P& R algorithm are taken from [54]; (in the more recent [58], a variant of the
latter algorithm is applied to smaller test problems than those studied by Table 5).
These strategies used relative optimality criteriaof 0.1 and 0.001, respectively. Our
algorithm was applied with an absolute optimality criterion of e = 108, It should
be noted that the codes used to generate the test problems of Table 5 were the same
for the three algorithms. Also, each row of this table was generated from atotal of
10 different random runs. Apparently, our sequential implementation on a standard
engineering workstation provides more accurate results for this class of problems
in very reasonable computing times. Even the largest problems with 100 nonlinear
variables, 400 linear variables and 50 constraints can be solved within a matter of
minutes.

For each pair of values taken by m and n in Table 5, Figure 4 depicts how
the number of nodes requires by the branch & bound algorithm increases with
the number & of linear variables. The increase seems to follow an approximately
guadratic relationship.

Regarding the comparative results of Tables 3 through 5, it is also insightful
to compare the relative capabilities of the hardware, which alows us to directly
compare CPU times on different computers at different points in time. Table 6,
extracted from Dongarra [15], gives three measures of computing speed for each



30

Table5. CPU times (sec) for the Phillips and Rosen test problems.
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GOP93 [84] P& R87 [54]* P& R87 [54]* proposed agorithm
E=0.1 (relative) E=0.001 (relative) E=0.001 (relative) ¢ = 10~ ° (absolute)
HP 730 CRAY 2 (paradlel) CRAY 2(serid) IBM RS/6000 PC
m n k avg stddev min avg max min avg max min avg max
20 25 0 045 0012 1 2 4 1 6 9 02 04 05
20 25 50 1662 1614 1 1 1 1 2 3 08 1 12
20 25 100 16508 19711 1 2 3 3 4 5 1 2 3
20 25 200 33149 28441 1 7 18 5 20 47 2 4 7
20 25 400 82026 57834 7 14 32 20 44 93 4 9 14
20 50 O 0554 0012 3 6 13 9 17 37 12 14 16
20 50 50 17436 30908 1 2 3 4 5 7 2 3 4
20 50 100 46.761 49195 2 5 14 7 17 43 3 4 7
20 50 200 108.968 80.490 4 9 29 11 29 79 5 9 21
20 50 400 20 32 51 68 105 163 8 20 31
40 25 0 0465 0.017 02 04 05
40 25 50 0970 0.566 03 1 12
40 25 100 2708 4.211 1 2 3
40 25 200 25.142 26.127 2 35 4
40 25 400 11 17 24
50 100 O 55 8 23
50 100 50 8 95 11
50 100 100 7 14 29
50 100 200 13 45 137
50 100 400 38 168 380
* Data Estimated From Figures 5-8 of [54].
Table 6. Comparative Speed of Computers* in Mflop/s**
Computer Experimental Theoretical
LINPACK, n=100 Custom, n=1000
Cray-2/4-256 (4 processors, 4.1 ns) 62 1226 1951
IBM 3090 supercomputer 71-97 116-138
HP 9000/730 (66 MHz) 24 49 66
IBM RS/6000-N40 (PowerPC601 50MHz) NA 50

*Extracted from [15].

*Millions of floating point operations per second.

machine previously mentioned. For each machine listed in the first column of the
table, the second column provides the speed at which adense system of 100 linear
equationsis solved using standard programsfrom the LINPACK [14] librariesin a
FORTRAN environment. The third column shows results based on solving adense
system of 1000 linear equations using a custom implementation on each computer.
Finally, the fourth column indicates the theoretical peak rate of execution based
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Figure 4. Number of branch & bound nodes for the Phillips and Rosen test problems.

on the cycle time of the hardware, as given by the manufacturer. By examining
Table 6, one can easily see that the other studies use faster processors. Yet, from
the computational resultsin Tables 3-5, one findsthat our algorithm is substantially
faster than existing ones.

6.2. APPLICATION TO NETWORK PROBLEMSWITH CONCAVE COSTS

The problem of selecting processesand planning expansionsof an industrial chem-
ical complex to maximize net present value has traditionally been formulated as a
multiperiod, mixed-integer linear program [70], [69]. However, the fixed-charges
in such problems allow for reformulation as concave programs. In fact, a concave
programming approach to these problems seems computationally more expedient
than solving the equivalent MILP; for solving actual process planning problems,
solution of the SCP using the algorithm proposed in this paper requires about
one-third of the time required to solve the MILP using OSL [40Q].

For example, consider the petrochemical complex planning problem given in
[70]. The problem involvesthirty-eight processes and twenty-eight chemicals over
four time periods, making for an MILP formulation in 897 variables (152 binaries
and 745 continuous variables), and 569 constraints. An equivalent SCP formu-
lation has only 745 continuous variables (152 concave and 593 linear), and 417
constraints. While solving the MILP on OSL required 13,289 nodes and 770 CPU
seconds, solving the SCP on BARON with the algorithm developed in this paper
required just 5,237 nodes and 638 CPU seconds [40].
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7. Conclusions

We draw two. One conclusionisof practical concern, the other of theoretical value.
Practically speaking, domain reduction techniques are an exceedingly compelling
way to accelerate computer implementations of branch-and-bound for nonlinear
programming. For concave programming in particular, this increase in computing
speed facilitates the solution of large industrial problems that had previously been
solved only by integer programming.
From the theoretical standpoint, a branch-and-bound algorithm using rectangu-
lar partitions can solve SCP globally and finitely by
(a) branching at the best known solution whenever possible, and
(b) partitioning exhaustively in the search process.
The degree to which results of the current paper can be extended to the general
NLP to provide finite termination with a global solution remains a major open
guestion.
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